【BZOJ2229】[Zjoi2011]最小割 最小割树
【BZOJ2229】[Zjoi2011]最小割
Description
小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割。 对于带权图来说,将所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而s,t的最小割指的是在关于s,t的割中容量最小的割” 现给定一张无向图,小白有若干个形如“图中有多少对点它们的最小割的容量不超过x呢”的疑问,小蓝虽然很想回答这些问题,但小蓝最近忙着挖木块,于是作为仍然是小蓝的好友,你又有任务了。
Input
输入文件第一行有且只有一个正整数T,表示测试数据的组数。 对于每组测试数据, 第一行包含两个整数n,m,表示图的点数和边数。 下面m行,每行3个正整数u,v,c(1<=u,v<=n,0<=c<=106),表示有一条权为c的无向边(u,v) 接下来一行,包含一个整数q,表示询问的个数 下面q行,每行一个整数x,其含义同题目描述。
Output
对于每组测试数据,输出应包括q行,第i行表示第i个问题的答案。对于点对(p,q)和(q,p),只统计一次(见样例)。
两组测试数据之间用空行隔开。
Sample Input
5 0
1
0
Sample Output
【数据范围】
对于100%的数据 T<=10,n<=150,m<=3000,q<=30,x在32位有符号整数类型范围内。
图中两个点之间可能有多条边
题解:最小割树,就是利用分治,将求n^2个最小割变成求n次最小割。
我们在区间l,r中随便找两个点,求出最小割,将与S一个集合的放到左边,与T一个集合的放到右面,然后更新所有点对之间的最小割,在继续分治处理左右两边。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <algorithm>
using namespace std;
int n,m,Q,S,T,cnt;
int to[10010],next[10010],val[10010],head[1000],d[300],p[300],pp[300],vis[300],map[300][300];
int s[100100];
queue<int> q;
int dfs(int x,int mf)
{
if(x==T) return mf;
int i,k,temp=mf;
for(i=head[x];i!=-1;i=next[i])
{
if(d[to[i]]==d[x]+1&&val[i])
{
k=dfs(to[i],min(temp,val[i]));
if(!k) d[to[i]]=0;
val[i]-=k,val[i^1]+=k,temp-=k;
if(!temp) break;
}
}
return mf-temp;
}
int bfs()
{
while(!q.empty()) q.pop();
memset(d,0,sizeof(d));
d[S]=1,q.push(S);
int i,u;
while(!q.empty())
{
u=q.front(),q.pop();
for(i=head[u];i!=-1;i=next[i])
{
if(!d[to[i]]&&val[i])
{
d[to[i]]=d[u]+1;
if(to[i]==T) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dinic()
{
int ret=0;
while(bfs()) ret+=dfs(S,1<<30);
return ret;
}
void DFS(int x)
{
vis[x]=1;
for(int i=head[x];i!=-1;i=next[i]) if(!vis[to[i]]&&val[i]) DFS(to[i]);
}
void solve(int l,int r)
{
if(l==r) return ;
S=p[l],T=p[r];
int i,j,h1=l,h2=r,mf;
for(i=0;i<cnt;i+=2) val[i]=val[i^1]=val[i]+val[i^1]>>1;
mf=dinic();
memset(vis,0,sizeof(vis));
DFS(S);
for(i=1;i<=n;i++) if(vis[i])
for(j=1;j<=n;j++) if(!vis[j])
map[i][j]=map[j][i]=min(map[i][j],mf);
for(i=l;i<=r;i++)
{
if(vis[p[i]]) pp[h1++]=p[i];
else pp[h2--]=p[i];
}
for(i=l;i<=r;i++) p[i]=pp[i];
solve(l,h2),solve(h1,r);
}
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
void add(int a,int b,int c)
{
to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
to[cnt]=a,val[cnt]=c,next[cnt]=head[b],head[b]=cnt++;
}
void work()
{
memset(head,-1,sizeof(head)),cnt=0;
memset(map,0x3f,sizeof(map));
n=rd(),m=rd();
int i,j,a,b,c,l,r,mid;
for(i=1;i<=n;i++) p[i]=i;
for(i=1;i<=m;i++) a=rd(),b=rd(),c=rd(),add(a,b,c);
solve(1,n);
for(s[0]=0,i=1;i<=n;i++) for(j=i+1;j<=n;j++) s[++s[0]]=map[i][j];
sort(s+1,s+s[0]+1);
Q=rd();
for(i=1;i<=Q;i++)
{
a=rd(),l=1,r=s[0]+1;
while(l<r)
{
mid=l+r>>1;
if(s[mid]<=a) l=mid+1;
else r=mid;
}
printf("%d\n",l-1);
}
}
int main()
{
int T=rd();
while(T--)
{
work();
if(T) printf("\n");
}
}
【BZOJ2229】[Zjoi2011]最小割 最小割树的更多相关文章
- [bzoj2229][Zjoi2011]最小割_网络流_最小割树
最小割 bzoj-2229 Zjoi-2011 题目大意:题目链接. 注释:略. 想法: 在这里给出最小割树的定义. 最小割树啊,就是这样一棵树.一个图的最小割树满足这棵树上任意两点之间的最小值就是原 ...
- bzoj2229: [Zjoi2011]最小割(分治最小割+最小割树思想)
2229: [Zjoi2011]最小割 题目:传送门 题解: 一道非常好的题目啊!!! 蒟蒻的想法:暴力枚举点对跑最小割记录...绝对爆炸啊.... 开始怀疑是不是题目骗人...难道根本不用网络流?? ...
- scu - 3254 - Rain and Fgj(最小点权割)
题意:N个点.M条边(2 <= N <= 1000 , 0 <= M <= 10^5),每一个点有个权值W(0 <= W <= 10^5),现要去除一些点(不能去掉 ...
- 算法笔记--最大流和最小割 && 最小费用最大流 && 上下界网络流
最大流: 给定指定的一个有向图,其中有两个特殊的点源S(Sources)和汇T(Sinks),每条边有指定的容量(Capacity),求满足条件的从S到T的最大流(MaxFlow). 最小割: 割是网 ...
- 3532: [Sdoi2014]Lis 最小字典序最小割
3532: [Sdoi2014]Lis Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 865 Solved: 311[Submit][Status] ...
- HDU 1394 Minimum Inversion Number(最小逆序数 线段树)
Minimum Inversion Number [题目链接]Minimum Inversion Number [题目类型]最小逆序数 线段树 &题意: 求一个数列经过n次变换得到的数列其中的 ...
- POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心)-动态规划做法
POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心) Description Farmer John ...
- 紫书 例题 11-2 UVa 1395(最大边减最小边最小的生成树)
思路:枚举所有可能的情况. 枚举最小边, 然后不断加边, 直到联通后, 这个时候有一个生成树.这个时候,在目前这个最小边的情况可以不往后枚举了, 可以直接更新答案后break. 因为题目求最大边减最小 ...
- BZOJ2229[Zjoi2011]最小割——最小割树
题目描述 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分 ...
随机推荐
- Git Base 操作(一)
Git常用命令 1. 命令git init把这个目录变成Git可以管理的仓库: 2. 命令git commit把文件提交到仓库 这里需要注意的是,Git只能跟踪文本文件的改动,如txt文件,网页,所有 ...
- The End Of 2016
上半年,在意识模糊的各种考试中度过……每天都在想高考的那几天会是什么样…… 果然,高考期间身体还是出了状况.数学滚粗之后都有点不想考了==但还是坚持到了最后一门. 怎么说呢:高中三年过得不是很开心. ...
- bzoj1455&&luogu2713罗马游戏
罗马游戏 题目描述 罗马皇帝很喜欢玩杀人游戏. 他的军队里面有n个人,每个人都是一个独立的团.最近举行了一次平面几何测试,每个人都得到了一个分数. 皇帝很喜欢平面几何,他对那些得分很低的人嗤之以鼻. ...
- luogu P3376 【模板】网络最大流(no)ek
题目描述 如题,给出一个网络图,以及其源点和汇点,求出其网络最大流. 输入输出格式 输入格式: 第一行包含四个正整数N.M.S.T,分别表示点的个数.有向边的个数.源点序号.汇点序号. 接下来M行每行 ...
- JAVA基础之集合、Iterator迭代器、泛型及增强for循环
个人理解: 对于集合,首先要明确的是最顶层的接口是Collection接口类,其包含一些基本的方法以便子类调用,不过在定义的时候最好定义好数据类型,以免遍历时还得必须进行向上转型:特别注意的是其没有关 ...
- mariadb设置utf8mb4
1 . mysql真正的utf8是utf8mb4才是有效的utf8 a). mariaDB的设置方法 #vim /etc/my.conf [mysqld] character_set_server=u ...
- Displaying Tabbed and Stacked Canvas Using Show_View In Oracle Forms
Displays the indicated canvas at the coordinates specified by the canvas's X Position and Y Position ...
- php 报错等级
定义和用法: error_reporting() 设置 PHP 的报错级别并返回当前级别. 函数语法: error_reporting(report_level) 如果参数 level 未 ...
- Asp.net对文件夹和文件的操作类
using System; using System.IO; using System.Web; namespace SEC { /**//// /// 对文件和文件夹的操作类 /// public ...
- Windows下ELK-5.4.3环境搭建
Windows下ELK-5.4.3环境搭建 一.概述 ELK官网 https://www.elastic.co ELK由Elasticsearch.Logstash和Kibana三部分组件组成: El ...