如果prime[i]是k的因子,那么【k * (在prime[i]以后的质数)】等于【prime[i]*(k/prime[i])*(这个质数)】,一定被筛过了,所以这里可以break。

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
bool isp[10000005];
int n, m, cnt, pri[10000005], uu;
int main(){
cin>>n>>m;
memset(isp, true, sizeof(isp));
isp[0] = isp[1] = false;
for(int i=2; i<=n; i++){
if(isp[i]) pri[++cnt] = i;
for(int j=1; j<=cnt; j++){
if(i*pri[j]>n) break;
isp[i*pri[j]] = false;
if(i%pri[j]==0) break;
}
}
for(int i=1; i<=m; i++){
scanf("%d", &uu);
if(isp[uu]) printf("Yes\n");
else printf("No\n");
}
return 0;
}

luogu3383 【模板】线性筛素数的更多相关文章

  1. [洛谷P3383][模板]线性筛素数-欧拉筛法

    Description 如题,给定一个范围N,你需要处理M个某数字是否为质数的询问(每个数字均在范围1-N内) Input&Output Input 第一行包含两个正整数N.M,分别表示查询的 ...

  2. 【洛谷 p3383】模板-线性筛素数(数论)

    题目:给定一个范围N,你需要处理M个某数字是否为质数的询问(每个数字均在范围1-N内).(N<=10000000,M<=100000) 解法:1.欧拉筛O(n),数组近乎100KB:2.( ...

  3. 洛谷P3383 【模板】线性筛素数

    P3383 [模板]线性筛素数 256通过 579提交 题目提供者HansBug 标签 难度普及- 提交  讨论  题解 最新讨论 Too many or Too few lines 样例解释有问题 ...

  4. 洛谷 P3383 【模板】线性筛素数

    P3383 [模板]线性筛素数 题目描述 如题,给定一个范围N,你需要处理M个某数字是否为质数的询问(每个数字均在范围1-N内) 输入输出格式 输入格式: 第一行包含两个正整数N.M,分别表示查询的范 ...

  5. 洛谷 P3383 【模板】线性筛素数-线性筛素数(欧拉筛素数)O(n)基础题贴个板子备忘

    P3383 [模板]线性筛素数 题目描述 如题,给定一个范围N,你需要处理M个某数字是否为质数的询问(每个数字均在范围1-N内) 输入输出格式 输入格式: 第一行包含两个正整数N.M,分别表示查询的范 ...

  6. 欧拉函数O(sqrt(n))与欧拉线性筛素数O(n)总结

    欧拉函数: 对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目. POJ 2407.Relatives-欧拉函数 代码O(sqrt(n)): ll euler(ll n){ ll ans=n; ...

  7. leetcode 204. Count Primes(线性筛素数)

    Description: Count the number of prime numbers less than a non-negative number, n. 题解:就是线性筛素数的模板题. c ...

  8. ACM-ICPC 2018 南京赛区网络预赛 J题Sum(线性筛素数)

    题目链接:https://nanti.jisuanke.com/t/30999 参考自博客:https://kuangbin.github.io/2018/09/01/2018-ACM-ICPC-Na ...

  9. [Luogu]A%BProblem——线性筛素数与前缀和

    题目描述 题目背景 题目名称是吸引你点进来的[你怎么知道的] 实际上该题还是很水的[有种不祥的预感..] 题目描述 区间质数个数 输入输出格式 输入格式: 一行两个整数 询问次数n,范围m接下来n行, ...

  10. [SDOI2008]沙拉公主的困惑 线性筛 素数+欧拉

    本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia [SDOI2008]沙拉公主的困惑 线性筛 素数+欧拉 题目大意 给定n,m,求在1到n!内与m!互质的 ...

随机推荐

  1. 关于window.event.returnValue=false的用处

    window.event.returnValue=false放在提交表单中的onclick事件中则不会提交表单,如果放到超链接中则不执行超链接,也就是它禁止了或取消了请求,没有任何效果. 比如: if ...

  2. Kendo MVVM 数据绑定(八) Style

    Kendo MVVM 数据绑定(八) Style Style 绑定可以通过 ViewModel 绑定到 DOM 元素 CSS 风格属性,例如: <span data-bind="sty ...

  3. [opencv bug] orb flannBaseMatcher Exception

    when i use flannBaseMathcer to match 2 sets of orb descriptor, it occured an exception : unsigned lo ...

  4. python+selenium之多表单切换

    在Web应用中经常会遇到fram/iframe表单嵌套页面的应用,WebDriver只能在一个页面上对元素识别与定位,对于fram/iframe表单内嵌套页面上的元素无法直接定位.这是需要通过swit ...

  5. UVA 1611 Crane 起重机 (子问题)

    题意:给一个1~n排列,1<=n<=10000,每次操作选取一个长度为偶数的连续区间.交换前一半和后一半,使它变成升序. 题解:每次只要把最小的移动到最左边,那么问题规模就缩小了.假设当前 ...

  6. [转]C++中sizeof(struct)怎么计算?

    版权属于原作者,我只是排版. 1. sizeof应用在结构上的情况 请看下面的结构: struct MyStruct{ double dda1; char dda; int type;}; 对结构My ...

  7. 1968: C/C++经典程序训练6---歌德巴赫猜想的证明

    1968: C/C++经典程序训练6---歌德巴赫猜想的证明 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 1165  Solved: 499[Submi ...

  8. hadoop相关资料集锦

    1 Hadoop集群系列集锦http://www.cnblogs.com/xia520pi/archive/2012/04/08/2437875.html 2 Hadoop和MapReduce详解ht ...

  9. springboot autoconfig

    springboot自动配置的核心思想是:springboot通过spring.factories能把main方法所在类路径以外的bean自动加载 springboot starter验证 我在spr ...

  10. 用Windows Native API枚举所有句柄及查找文件句柄对应文件名的方法

    枚举所有句柄的方法 由于windows并没有给出枚举所有句柄所用到的API,和进程所拥有的句柄相关的只有GetProcessHandleCount这个函数,然而这个函数只能获取到和进程相关的句柄数,不 ...