【bzoj2186】[Sdoi2008]沙拉公主的困惑 欧拉函数
题目描述
大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票。房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量。现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可。R是一个质数。
输入
第一行为两个整数T,R。R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,每行一对整数N,M,见题目描述 m<=n
输出
共T行,对于每一对N,M,输出1至N!中与M!素质的数的数量对R取模后的值
样例输入
1 11
4 2
样例输出
1
题解
欧拉函数
如果a与m互质,那么a+m与m一定也互质,a+2m与m一定也互质,a+(k-1)m与m一定也互质。
所以km中与m互质的数是m中与m互质的数的k倍,即kφ(m)
注意到这里边N!是M!的倍数,所以所求即为N!/M!*φ(M!)
而φ(M!)=M!*∏(p-1)/p,p为M的质因子,所以所求就是N!/∏p,我们只需要预处理出1/∏p即可。这里我们需要筛素数和求逆元。
然后学到了一种O(n)递推求逆元的方法:ine[i]=(R-R/i*ine[R%i]%R)
这样就能够在O(n)时间内预处理出1/∏p,最后再乘上N!即可。
#include <cstdio>
#define N 10000010
typedef long long ll;
const int n = 10000000;
int fac[N] , ine[N] , ans[N] , phi[N] , prime[N] , tot;
bool np[N];
int main()
{
int T , p , i , j , x , y;
scanf("%d%d" , &T , &p);
fac[1] = phi[1] = ine[1] = ans[1] = 1;
for(i = 2 ; i <= n ; i ++ )
{
fac[i] = (ll)fac[i - 1] * i % p , ine[i] = (ll)(p - p / i) * ine[p % i] % p , ans[i] = ans[i - 1];
if(!np[i]) phi[i] = i - 1 , ans[i] = (ll)ans[i] * (i - 1) % p * ine[i % p] % p , prime[++tot] = i;
for(j = 1 ; j <= tot && i * prime[j] <= n ; j ++ )
{
np[i * prime[j]] = 1;
if(i % prime[j] == 0)
{
phi[i * prime[j]] = phi[i] * prime[j];
break;
}
else phi[i * prime[j]] = phi[i] * (prime[j] - 1);
}
}
while(T -- ) scanf("%d%d" , &x , &y) , printf("%lld\n" , (ll)fac[x] * ans[y] % p);
return 0;
}
【bzoj2186】[Sdoi2008]沙拉公主的困惑 欧拉函数的更多相关文章
- [BZOJ 2186][Sdoi2008]沙拉公主的困惑(欧拉函数)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2186 分析: 就是要求1~n!中与m!互质的数的个数 首先m!以内的就是φ(m!) 关 ...
- bzoj 2186 [Sdoi2008]沙拉公主的困惑 欧拉函数
n>=m,所以就变成了求 ϕ(m!)∗n!/m! 而 ϕ(m!)=m!∗(p−1)/p...... p为m!的素因子,即为m内的所有素数,问题就转化为了求 n!∗(p−1)/p...... 只需 ...
- 【bzoj2186】: [Sdoi2008]沙拉公主的困惑 数论-欧拉函数
[bzoj2186]: [Sdoi2008]沙拉公主的困惑 考虑当 gcd(a,b)=1 则 gcd(nb+a,b)=1 所以[1,N!]与M!互质的个数就是 筛出[1,M]所有的素数p[i] 以及逆 ...
- BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 5003 Solved: 1725 [Submit] ...
- 【BZOJ2186】[Sdoi2008]沙拉公主的困惑 线性筛素数
[BZOJ2186][Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M! ...
- BZOJ_2186_[Sdoi2008]沙拉公主的困惑_欧拉函数
BZOJ_2186_[Sdoi2008]沙拉公主的困惑_欧拉函数 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行 ...
- bzoj2186【SDOI2008】沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 2363 Solved: 779 [id=2186& ...
- [SDOI2008]沙拉公主的困惑 线性筛 素数+欧拉
本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia [SDOI2008]沙拉公主的困惑 线性筛 素数+欧拉 题目大意 给定n,m,求在1到n!内与m!互质的 ...
- [bzoj2186][Sdoi2008]沙拉公主的困惑_数论
沙拉公主的困惑 bzoj-2186 Sdoi-2008 题目大意:求N!中与M!互质的数的个数. 注释:$1\le N,M\le 10^7$. 想法:显然是求$\phi(M!)$.这东西其实只需要将数 ...
随机推荐
- 浅谈前端性能优化(二)——对HTTP传输进行压缩
1.前端性能优化的一点: 对js.css.图片等进行压缩,尽可能减小文件的大小,减少文件下载的时间,从而减少网页响应的时间. 2.前端性能优化的另一点: 对HTTP传输进行压缩,即在js,css.图片 ...
- Zend Studio 12.5.1原版安装破解
安装官方Zend Studio 12.5.1原版,关闭zend studio,然后将破解补丁com.zend.verifier_12.5.1.v20150514-2003.jar覆盖到 安装目录\pl ...
- 分词,复旦nlp,NLPIR汉语分词系统
http://www.nlpir.org/ http://blog.csdn.net/zhyh1986/article/details/9167593
- python读取txt写入txt
http://www.cnblogs.com/allenblogs/archive/2010/09/13/1824842.html
- C#自减运算符
一.C#自减运算符(--) 自减运算符(--)是将操作数减1. 1. 前缀自减运算符 前缀自减运算符是“先减1,后使用”.它的运算结果是操作数减1之后的值. 例如: --x; // 前缀自减运算符 ...
- XAMPP安装过程中,出现的问题
这次运行一个简单的前端(html+css+js+ajax)+php后端项目,运行XAMPP的时候,出现两个问题: phpmyadmin运行不起来,一直报1544错误 请求本地图片及php文件报403错 ...
- 关于html标签的两种隐藏方式
做一个文章管理模块 有一个功能是需要根据文章分类来显示内容的标签 刚开始以为很简单 ,手放键盘上就是一顿敲. 如果类型是文章就是没问题 可是另外几种就有问题了 红框的标签一直不出来 后来找了半天然来 ...
- awk速查手册
简介awk是一个强大的文本分析工具,相对于grep的查找,sed的编辑,awk在其对数据分析并生成报告时,显得尤为强大.简单来说awk就是把文件逐行的读入,以空格为默认分隔符将每行切片,切开的部分再进 ...
- 用 Tensorflow 建立 CNN
稍稍乱入的CNN,本文依然是学习周莫烦视频的笔记. 还有 google 在 udacity 上的 CNN 教程. CNN(Convolutional Neural Networks) 卷积神经网络简单 ...
- 定时任务之crond服务
计划任务分为一次性计划任务与长期性计划任务 一次性计划任务:今天11:25执行重启网卡操作,执行结束 即任务消失 一次性计划任务格式: 创建:"at 时间" #默认采用的是交互式 ...