POJ1904(有向图缩点+输入输出挂参考)
| Time Limit: 15000MS | Memory Limit: 65536K | |
| Total Submissions: 8311 | Accepted: 3017 | |
| Case Time Limit: 2000MS | ||
Description
So the king asked his wizard to find for each of his sons the girl he liked, so that he could marry her. And the king's wizard did it -- for each son the girl that he could marry was chosen, so that he liked this girl and, of course, each beautiful girl had to marry only one of the king's sons.
However, the king looked at the list and said: "I like the list you have made, but I am not completely satisfied. For each son I would like to know all the girls that he can marry. Of course, after he marries any of those girls, for each other son you must still be able to choose the girl he likes to marry."
The problem the king wanted the wizard to solve had become too hard for him. You must save wizard's head by solving this problem.
Input
The last line of the case contains the original list the wizard had made -- N different integer numbers: for each son the number of the girl he would marry in compliance with this list. It is guaranteed that the list is correct, that is, each son likes the girl he must marry according to this list.
Output
Sample Input
4
2 1 2
2 1 2
2 2 3
2 3 4
1 2 3 4
Sample Output
2 1 2
2 1 2
1 3
1 4
题意:一个国王有N个王子。一共有N个女孩,每个王子可以喜欢多个女孩,但只能取一个女孩。给定一个参考结婚列表,问每个王子可分别与哪几个女孩结婚。
思路:王子与女孩之间建立有向图,再根据参考结婚列表建立反向边,那么与王子处于同一个连通分量的女孩且是王子喜欢的可以和王子结婚。
附输入输出挂
#include"cstdio"
#include"cstring"
#include"algorithm"
using namespace std;
const int MAXN=;
struct Edge{
int to,next;
}es[];
int V;
void Scan(int &val)
{
char ch;
int x=;
bool flag=true;
ch=getchar();
if(ch=='-') flag=false;
else if(''<=ch&&ch<='') x=(ch-'');
while((ch=getchar())&&''<=ch&&ch<='')
x=x*+ch-'';
val=(flag==true)?x:-x;
}
void Print(int x)
{
if(x>) Print(x/);
putchar(x%+'');
}
int head[MAXN],tot;
void add_edge(int u,int v)
{
es[tot].to=v;
es[tot].next=head[u];
head[u]=tot++;
}
int index;
int dfn[MAXN],low[MAXN];
int stack[MAXN],top;
int cpnt[MAXN],cnt;
bool instack[MAXN];
void tarjan(int u)
{
instack[u]=true;
stack[top++]=u;
dfn[u]=low[u]=++index;
for(int i=head[u];i!=-;i=es[i].next)
{
int v=es[i].to;
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(instack[v]) low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u])
{
int v;
cnt++;
do{
v=stack[--top];
instack[v]=false;
cpnt[v]=cnt;
}while(u!=v);
}
}
int ans[MAXN];
void solve()
{
memset(ans,,sizeof(ans));
for(int i=;i<=V+V;i++)
if(!dfn[i]) tarjan(i); for(int i=;i<=V;i++)
{
int counter=;
for(int j=head[i];j!=-;j=es[j].next)
{
int v=es[j].to;
if(cpnt[v]==cpnt[i]) ans[counter++]=v-V;
}
sort(ans,ans+counter);
Print(counter);
for(int j=;j<counter;j++) putchar(' '),Print(ans[j]);
putchar('\n');
}
} int main()
{
while(scanf("%d",&V)!=EOF)
{
tot=index=top=cnt=;
memset(head,-,sizeof(head));
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(instack,false,sizeof(instack));
memset(cpnt,,sizeof(cpnt));
for(int i=;i<=V;i++)
{
int k;
Scan(k);
while(k--)
{
int v;
Scan(v);
add_edge(i,V+v);
}
}
for(int i=;i<=V;i++)
{
int v;
Scan(v);
add_edge(V+v,i);
}
solve();
}
return ;
}
kosaraju算法——有向图缩点利器
#include"cstdio"
#include"cstring"
#include"algorithm"
#include"vector"
using namespace std;
const int MAXN=;
vector<int> G[MAXN];
vector<int> rG[MAXN];
vector<int> vs;
int V,E;
void add_edge(int u,int v)
{
G[u].push_back(v);
rG[v].push_back(u);
}
int vis[MAXN];
int cpnt[MAXN];
void dfs(int u)
{
vis[u]=;
for(int i=;i<G[u].size();i++)
if(!vis[G[u][i]]) dfs(G[u][i]);
vs.push_back(u);
}
void rdfs(int u,int k)
{
vis[u]=;
cpnt[u]=k;
for(int i=;i<rG[u].size();i++)
if(!vis[rG[u][i]]) rdfs(rG[u][i],k);
}
void scc()
{
vs.clear();
memset(vis,,sizeof(vis));
for(int i=;i<=V+V;i++)
if(!vis[i]) dfs(i);
memset(vis,,sizeof(vis));
int k=;
for(int i=vs.size()-;i>=;i--)
if(!vis[vs[i]]) rdfs(vs[i],k++);
}
int ans[MAXN];
void solve()
{
memset(ans,,sizeof(ans));
scc();
for(int i=;i<=V;i++)
{
int counter=;
for(int j=;j<G[i].size();j++)
{
int v=G[i][j];
if(cpnt[i]==cpnt[v]) ans[counter++]=v-V;
}
sort(ans,ans+counter);
printf("%d",counter);
for(int i=;i<counter;i++) printf(" %d",ans[i]);
printf("\n");
}
}
int main()
{
while(scanf("%d",&V)!=EOF)
{
for(int i=;i<=V+V;i++)
{
G[i].clear();
rG[i].clear();
} for(int i=;i<=V;i++)
{ int k;
scanf("%d",&k);
while(k--)
{
int v;
scanf("%d",&v);
add_edge(i,v+V);
}
}
for(int i=;i<=V;i++)
{
int v;
scanf("%d",&v);
add_edge(v+V,i);
} solve();
}
return ;
}
POJ1904(有向图缩点+输入输出挂参考)的更多相关文章
- 【输入输出挂】【Uva11462】Age Sort
例题17 年龄排序(Age Sort, UVa 11462)照从小到大的顺序输出. [输入格式] 输入包含多组测试数据.每组数据的第一行为整数n(0<n≤2 000 000),即居民总数:下一 ...
- hdu 3072 有向图缩点成最小树形图计算最小权
题意,从0点出发,遍历所有点,遍历边时候要付出代价,在一个SCC中的边不要付费.求最小费用. 有向图缩点(无需建立新图,,n<=50000,建则超时),遍历边,若不在一个SCC中,用一个数组更新 ...
- HDU1269(有向图缩点模板题)
迷宫城堡 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- POJ2553( 有向图缩点)
The Bottom of a Graph Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 9779 Accepted: ...
- POJ2186(有向图缩点)
Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 28379 Accepted: 11488 De ...
- hdu 1827 有向图缩点看度数
题意:给一个有向图,选最少的点(同时最小价值),从这些点出发可以遍历所有. 思路:先有向图缩点,成有向树,找入度为0的点即可. 下面给出有向图缩点方法: 用一个数组SCC记录即可,重新编号,1.... ...
- HDU 4635 (完全图 和 有向图缩点)
题目链接:HDU 4635 题目大意: 给你一个有向图,加有向边,使得这个图是简单有向图.问你最多加多少条有向边. 简单有向图: 1.不存在有向重边. 2.不存在图循环.(注意是不存在 “图” 循环 ...
- poj 2823 Sliding Windows (单调队列+输入输出挂)
Sliding Window Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 73426 Accepted: 20849 ...
- 对Tarjan——有向图缩点算法的理解
开始学tarjan的时候,有关无向图的割点.桥.点双边双缩点都比较容易地理解了,唯独对有向图的缩点操作不甚明了.通过对luoguP2656_采蘑菇一题的解决,大致搞清了tarjan算法的正确性. 首先 ...
随机推荐
- 非GUI模式下运行JMeter和远程启动JMeter
JMeter是一款非常不错的免费开源压力测试工具,越来越多的公司在使用.不过,在使用过程中可能会存在一些问题,比如:GUI模式非常消耗资源,单个客户端测试无法达到目标压力.而使用非 GUI 模式,即命 ...
- LoadRunner多负载产生器
Executive Summary : The following explains why it is necessary to have about 6 load generators when ...
- Android自己定义View的实现方法
转载请注明出处:http://blog.csdn.net/guolin_blog/article/details/17357967 不知不觉中,带你一步步深入了解View系列的文章已经写到第四篇了.回 ...
- 【每日Scrum】第五天(4.15) TD学生助手Sprint1站立会议
TD学生助手Sprint1站立会议(4.15) 任务看板 站立会议内容 组员 昨天 今天 困难 签到 刘铸辉 (组长) 今天和静姐,娇哥把图片3D画廊效果的功能实现了,GPS功能没什么进展,所以只能继 ...
- PCIE、UART、HDA、I2C、SMBUS、SPI、eSPI、USB、PS2、CAN、SDIO等数据传输协议简介
M.2 wife一般支持USB.SDIO.PCIE三种传输 1.摄像头 (1)MIPI CSI (2)USB mipi摄像头模组IC简单便宜(小),应为一般把ADC解码在CPU端. MIPI摄像头简介 ...
- Python的专有属性
- iOS_12_tableViewCell的删除更新_红楼梦
终于效果图: Girl.h // // Girl.h // 12_tableView的增删改 // // Created by beyond on 14-7-27. // Copyright (c) ...
- kubernetes之创建基于名称空间的内存和cpu限额示例
系列目录 首先我们创建一个名称空间 kubectl create namespace quota-mem-cpu-example 创建资源配额 apiVersion: v1 kind: Resourc ...
- CentOS系统时间修改
1. 实体机器上安装CentOS $date -s '2015-03-03 13:34:00' 2. 虚拟机上安装的CentOS #查看系统时间和硬件时间 date hwclock --show #设 ...
- lazy evaluation and deferring a computation await promise async
Promise - JavaScript | MDN https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_ ...