1799: [Ahoi2009]self 同类分布

Time Limit: 50 Sec  Memory Limit: 64 MB
Submit: 2357  Solved: 1079
[Submit][Status][Discuss]

Description

给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数。

Sample Input

10 19

Sample Output

3

HINT

【约束条件】1 ≤ a ≤ b ≤ 10^18

Source

[Submit][Status][Discuss]

qingdaobaibai的题解

因为考虑到直接dp不可行,我们先枚举数字之和,共有9*18种,f[i][j][k][2]表示长度为i数字之和为j,模当前枚举的数字之和为k的是否严格小于该数的种类数。

那么f[i][j][k]-->f[i+1][j+p][(k*10+p)%mod]大概就是这样

#include<bits/stdc++.h>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;rg char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') w=-1;ch=getchar();}
while(isdigit(ch)) data=data*10+ch-'0',ch=getchar();
return data*w;
}
template<class T>il T read(rg T&x) {return x=read<T>();}
typedef long long ll; co int N=200,L=21;
ll f[L][N][N][2];
int n[L];
ll calc(ll x,int P){
if(!x) return 0;
memset(f,0,sizeof f);
int t=0;
while(x) n[++t]=x%10,x/=10;
f[t+1][0][0][0]=1;
for(int i=t+1;i>1;--i)
for(int j=0;j<=P;++j)
for(int k=0;k<P;++k)if(f[i][j][k][0]||f[i][j][k][1])
for(int p=0;p<10;++p){
int w=(10*k+p)%P;
if(p<n[i-1]&&j+p<=P) f[i-1][j+p][w][1]+=f[i][j][k][0];
else if(p==n[i-1]&&j+p<=P) f[i-1][j+p][w][0]+=f[i][j][k][0];
if(f[i][j][k][1]&&j+p<=P) f[i-1][j+p][w][1]+=f[i][j][k][1];
}
return f[1][P][0][0]+f[1][P][0][1];
}
int main(){
ll a=read<ll>(),b=read<ll>(),ans=0;
for(int i=1;i<=9*18;++i) ans+=calc(b,i)-calc(a-1,i);
printf("%lld\n",ans);
return 0;
}

[Ahoi2009]self 同类分布的更多相关文章

  1. bzoj 1799: [Ahoi2009]self 同类分布 数位dp

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Descripti ...

  2. bzoj1799: [Ahoi2009]self 同类分布

    数位dp 先从1到162枚举各位数之和 s[i][j][k][l]表示i位数,第一位小于等于j,当前各位数字和为k,当前取模余数为l的方案数 然后脑补一下转移就行了 详见代码 #include < ...

  3. BZOJ 1799 - [AHOI2009]self 同类分布 - 枚举 数位DP

    Description 找出$[L, R]$ 区间内有多少数, 各位数字和 能整除原数 Solution 枚举每个可能的数字和, 进行数位DP即可 , 水爆 Code #include<cstd ...

  4. 【BZOJ】1799: [Ahoi2009]self 同类分布

    [题意]给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数.1 ≤ a ≤ b ≤ 10^18 [算法]数位DP [题解] 感觉这种方法很暴力啊. 枚举数位和1~162(不能枚举0,不然会模 ...

  5. [BZOJ1799][Ahoi2009]self 同类分布(数位dp)

    题目描述 给出两个数 a,ba,b ,求出 [a,b][a,b] 中各位数字之和能整除原数的数的个数. 输入输出格式 输入格式: 一行,两个整数 aa 和 bb 输出格式: 一个整数,表示答案 输入输 ...

  6. BZOJ1799 [Ahoi2009]self 同类分布[数位DP]

    求出[a,b]中各位数字之和能整除原数的数的个数. 有困难的一道题.被迫看了题解:枚举每一个各位数字的和($<=162$),设计状态$f[len][sum][rest]$表示dp后面$len$位 ...

  7. 【数位dp】bzoj1799: [Ahoi2009]self 同类分布

    各种奇怪姿势的数位dp Description 给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数. Sample Input 10 19 Sample Output 3 HINT [约束条 ...

  8. 【AHOI2009】同类分布 题解(数位DP)

    题目大意:求$[l,r]$中各位数之和能被该数整除的数的个数.$0\leq l\leq r\leq 10^{18}$. ------------------------ 显然数位DP. 搜索时记录$p ...

  9. [BZOJ1799][AHOI2009]同类分布(数位DP)

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MBSubmit: 1635  Solved: 728[Submit][S ...

随机推荐

  1. CSS - Animate动画

    下载地址:https://daneden.github.io/animate.css/ 关键CSS样式:animate.css 引入CSS样式 <link rel="styleshee ...

  2. python pip换源方法

    以下资料来源于网络: pip国内的一些镜像   阿里云 http://mirrors.aliyun.com/pypi/simple/   中国科技大学 https://pypi.mirrors.ust ...

  3. 使用 WijmoJS 轻松实现撤消重做(Undo /Redo)

    使用 WijmoJS 轻松实现撤消重做(Undo /Redo) 在V2019.0 Update2 的全新版本中,WijmoJS能够轻松实现撤消和重做操作,使Web应用程序的使用更加友好.更加高效. 不 ...

  4. 01-Hadoop概述及基础环境搭建

    1 hadoop概述 1.1 为什么会有大数据处理 传统模式已经满足不了大数据的增长 1)存储问题 传统数据库:存储亿级别的数据,需要高性能的服务器:并且解决不了本质问题:只能存结构化数据 大数据存储 ...

  5. C++结构体、类和对象

    在C++中结构体(struct)和类(class)可以通用,[结构体是一种特殊的类] struct和class的区别:访问和控制. struct在缺省值的情况下可以是public在外部被访问到对于类来 ...

  6. Jmeter之Linux安装(Xshell),分布式运行Linux作为slave机

    甲方爸爸要求,用Linux压测......   所以在公司服务器Linux上搭建Jmeter 但实际一个Jmeter程序也有程序瓶颈~ 所以在Jmeter瓶颈下,搭建分布式压测系统.(也许可以尝试在一 ...

  7. 01满包加记录最小路劲 L3-001. 凑零钱

    过了这么久 正确理解01背包应该从记忆化搜索开始 这里对数字的取或者不取实际上就是一个01背包的模型 不过这里要求的是满包问题 那么我们动态便利的过程需要做一点 处理只有从0开始的能够向上更新 在就是 ...

  8. Java进阶开发-基于Base64的加密与解密操作

    基于Base64的加密与解密操作 正常来讲加密基本上永远伴随着解密,所谓的加密或者解密往往都是需要有一些所谓的规则.在JDK1.8开始提供有一组新的加密处理操作,Base64处理.在这个类里面有两个内 ...

  9. 简单了解soap协议

    SOAP的是什么的简写 soap是(Simple Object Access Protocal)的简写,即简单对象访问协议,它描述了一种在分散或分布式的环境中如何交换信息的轻量级协议. soap用来干 ...

  10. vue-无限滚动

    <ul class="infinite-list" v-infinite-scroll="load" style="overflow:auto& ...