[Ahoi2009]self 同类分布
1799: [Ahoi2009]self 同类分布
Time Limit: 50 Sec Memory Limit: 64 MB
Submit: 2357 Solved: 1079
[Submit][Status][Discuss]
Description
Sample Input
Sample Output
HINT
【约束条件】1 ≤ a ≤ b ≤ 10^18
Source
qingdaobaibai的题解
因为考虑到直接dp不可行,我们先枚举数字之和,共有9*18种,f[i][j][k][2]表示长度为i数字之和为j,模当前枚举的数字之和为k的是否严格小于该数的种类数。
那么f[i][j][k]-->f[i+1][j+p][(k*10+p)%mod]大概就是这样
#include<bits/stdc++.h>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;rg char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') w=-1;ch=getchar();}
while(isdigit(ch)) data=data*10+ch-'0',ch=getchar();
return data*w;
}
template<class T>il T read(rg T&x) {return x=read<T>();}
typedef long long ll;
co int N=200,L=21;
ll f[L][N][N][2];
int n[L];
ll calc(ll x,int P){
if(!x) return 0;
memset(f,0,sizeof f);
int t=0;
while(x) n[++t]=x%10,x/=10;
f[t+1][0][0][0]=1;
for(int i=t+1;i>1;--i)
for(int j=0;j<=P;++j)
for(int k=0;k<P;++k)if(f[i][j][k][0]||f[i][j][k][1])
for(int p=0;p<10;++p){
int w=(10*k+p)%P;
if(p<n[i-1]&&j+p<=P) f[i-1][j+p][w][1]+=f[i][j][k][0];
else if(p==n[i-1]&&j+p<=P) f[i-1][j+p][w][0]+=f[i][j][k][0];
if(f[i][j][k][1]&&j+p<=P) f[i-1][j+p][w][1]+=f[i][j][k][1];
}
return f[1][P][0][0]+f[1][P][0][1];
}
int main(){
ll a=read<ll>(),b=read<ll>(),ans=0;
for(int i=1;i<=9*18;++i) ans+=calc(b,i)-calc(a-1,i);
printf("%lld\n",ans);
return 0;
}
[Ahoi2009]self 同类分布的更多相关文章
- bzoj 1799: [Ahoi2009]self 同类分布 数位dp
1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec Memory Limit: 64 MB[Submit][Status][Discuss] Descripti ...
- bzoj1799: [Ahoi2009]self 同类分布
数位dp 先从1到162枚举各位数之和 s[i][j][k][l]表示i位数,第一位小于等于j,当前各位数字和为k,当前取模余数为l的方案数 然后脑补一下转移就行了 详见代码 #include < ...
- BZOJ 1799 - [AHOI2009]self 同类分布 - 枚举 数位DP
Description 找出$[L, R]$ 区间内有多少数, 各位数字和 能整除原数 Solution 枚举每个可能的数字和, 进行数位DP即可 , 水爆 Code #include<cstd ...
- 【BZOJ】1799: [Ahoi2009]self 同类分布
[题意]给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数.1 ≤ a ≤ b ≤ 10^18 [算法]数位DP [题解] 感觉这种方法很暴力啊. 枚举数位和1~162(不能枚举0,不然会模 ...
- [BZOJ1799][Ahoi2009]self 同类分布(数位dp)
题目描述 给出两个数 a,ba,b ,求出 [a,b][a,b] 中各位数字之和能整除原数的数的个数. 输入输出格式 输入格式: 一行,两个整数 aa 和 bb 输出格式: 一个整数,表示答案 输入输 ...
- BZOJ1799 [Ahoi2009]self 同类分布[数位DP]
求出[a,b]中各位数字之和能整除原数的数的个数. 有困难的一道题.被迫看了题解:枚举每一个各位数字的和($<=162$),设计状态$f[len][sum][rest]$表示dp后面$len$位 ...
- 【数位dp】bzoj1799: [Ahoi2009]self 同类分布
各种奇怪姿势的数位dp Description 给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数. Sample Input 10 19 Sample Output 3 HINT [约束条 ...
- 【AHOI2009】同类分布 题解(数位DP)
题目大意:求$[l,r]$中各位数之和能被该数整除的数的个数.$0\leq l\leq r\leq 10^{18}$. ------------------------ 显然数位DP. 搜索时记录$p ...
- [BZOJ1799][AHOI2009]同类分布(数位DP)
1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec Memory Limit: 64 MBSubmit: 1635 Solved: 728[Submit][S ...
随机推荐
- 部署开源mock平台doclever简单叙述
一.访问官网: http://doclever.cn/controller/index/index.html 二.doclever作用(重点:mock带有转发功能) DOClever是一个可视化接口管 ...
- mysql 插入数据后返回自增 ID 的七种方法
参考地址:https://blog.csdn.net/qq_30715329/article/details/80868411 其中使用函数方式.存储过程方式.注解方式.xml属性方式设置都可. 常用 ...
- idea spring+springmvc+mybatis环境配置整合详解
idea spring+springmvc+mybatis环境配置整合详解 1.配置整合前所需准备的环境: 1.1:jdk1.8 1.2:idea2017.1.5 1.3:Maven 3.5.2 2. ...
- OS X更新Catalina 10.15.2后虚拟机黑屏(已解决)
简述 问题:更新OS X 10.15.2后VM Ware进unbuntu 16.0黑屏,但是VM Ware 有显示,情况类似如下: 解决办法 重启系统,command+r 进入恢复模式,打开bas ...
- [校内模拟赛T3]火花灿灿_二分答案_组合数学_贪心
火花灿灿 题目: 数据范围: 题解: 这个题真的是个神仙题. 我们对于每块石头维护一个$01$串. 这个$01$串的长度是操作次数. 如果$01$串的当前位是$1$,表示这次操作中当前石子被划分到了贡 ...
- 【转帖】linux sort,uniq,cut,wc,tr,xargs命令详解
linux sort,uniq,cut,wc,tr,xargs命令详解 http://embeddedlinux.org.cn/emb-linux/entry-level/201607/21-5550 ...
- [转帖]公钥基础设施(PKI)/CFSSL证书生成工具的使用
公钥基础设施(PKI)/CFSSL证书生成工具的使用 weilovepan520关注1人评论84344人阅读2018-05-26 12:22:20 https://blog.51cto.com/liu ...
- shell 字符
Shell 中的符号: 在shell中有很多符号代表了一些意思,重点说说 键盘上的符号在shell中的意义. 通配符: ~ 匹配家目录 ? 匹配单个字符.( ?之匹配单一的一个字符.x11 这种的就 ...
- oracle按用户导出导入表
查看备份目录:select * from dba_directories where directory_name='DATA_PUMP_DIR'; 导入导出的文件名默认都是以备份目录为相对路径. 按 ...
- jq之display:none与visible:hidden
http://www.cnblogs.com/linxiong945/p/4075146.html 今天学习到jquery的hide()部分时,突然有一个想法,jquery中的隐藏/显示部分的实现是给 ...