题目连接

问题分析

可以给小树钦定一个根, \(Dp[i][j]\) 表示大树上的点 \(i\) 对应到小树上的点 \(j\) 的可能的方案数。然后每一步转移都是一个状压DP(将小树是否被匹配状压,然后枚举大树上的点和小树上的点匹配)。

但如果这样统计的话,在两种情况下有重复:

  • 在小树取不同的根但仍同构;
  • 确定小树的根后,小树的子树同构。

所以我们对钦定根后的小树进行哈希,即可排除第一种重复。而如果小树的某两个子树同构,那么就在统计的时候强行钦定一个顺序,这样就解决了第二种重复。

参考程序

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <set> const int Maxn = 2000;
const int Maxm = 12;
const int MaxAlpha = 1 << Maxm;
int Mod = 1e9 + 7;
struct edge
{
int To, Next;
edge() {}
edge(int _To, int _Next) : To(_To), Next(_Next) {}
};
struct node {
int Value, Index;
node() {}
node(int _Value, int _Index) : Value(_Value), Index(_Index) {}
inline bool operator<(const node Other) const
{
return Value < Other.Value;
}
};
edge Edge1[Maxn << 1], Edge2[Maxm << 1];
int n, m, Ans;
int Start1[Maxn + 1], Start2[Maxm + 1], Used1, Used2;
int Hash[Maxm + 1], Father[Maxm + 1], Size[Maxm + 1];
int Dp[Maxn + 1][Maxm + 1], F[2][MaxAlpha];
node Temp[Maxm + 1]; int Ctrl[Maxm + 1];
std::set<int> Set; inline void AddEdge1(int x, int y);
inline void AddEdge2(int x, int y);
inline void Init();
void GetHash(int u, int Fa);
void Calc(int u, int Fa); int main()
{
Init();
for (int i = 1; i <= m; ++i)
{
GetHash(i, 0);
if (Set.count(Hash[i]))
continue;
Set.insert(Hash[i]);
memset(Dp, 0, sizeof(Dp));
Calc(1, 0);
for (int j = 1; j <= n; ++j)
Ans = (Ans + Dp[j][i]) % Mod;
}
printf("%d\n", Ans);
return 0;
} inline void AddEdge1(int x, int y)
{
Edge1[++Used1] = edge(y, Start1[x]);
Start1[x] = Used1;
return;
} inline void AddEdge2(int x, int y)
{
Edge2[++Used2] = edge(y, Start2[x]);
Start2[x] = Used2;
return;
} inline void Init()
{
scanf("%d", &n);
for (int i = 1; i < n; ++i)
{
int x, y;
scanf("%d%d", &x, &y);
AddEdge1(x, y);
AddEdge1(y, x);
}
scanf("%d", &m);
for (int i = 1; i < m; ++i)
{
int x, y;
scanf("%d%d", &x, &y);
AddEdge2(x, y);
AddEdge2(y, x);
}
return;
} void GetHash(int u, int Fa)
{
Size[u] = 1;
Father[u] = Fa;
for (int t = Start2[u]; t; t = Edge2[t].Next)
{
int v = Edge2[t].To;
if (v == Fa)
continue;
GetHash(v, u);
Size[u] += Size[v];
}
int Count = 0;
for (int t = Start2[u]; t; t = Edge2[t].Next)
{
int v = Edge2[t].To;
if (v == Fa)
continue;
Temp[++Count] = node(Hash[v], v);
}
std::sort(Temp + 1, Temp + Count + 1);
Hash[u] = 0;
for (int i = 1; i <= Count; ++i)
{
Hash[u] <<= Size[Temp[i].Index] << 1;
Hash[u] += Hash[Temp[i].Index];
}
Hash[u] <<= 1;
Hash[u] += 1 << ((Size[u] << 1) - 1);
return;
} void Calc(int u, int Fa)
{
for (int t = Start1[u]; t; t = Edge1[t].Next)
{
int v = Edge1[t].To;
if (v == Fa)
continue;
Calc(v, u);
}
for (int uu = 1; uu <= m; ++uu)
{
if (Size[uu] == 1)
{
Dp[u][uu] = 1;
continue;
}
int Count = 0;
memset(Ctrl, 0, sizeof(Ctrl));
for (int t = Start2[uu]; t; t = Edge2[t].Next)
{
int v = Edge2[t].To;
if (v ==Father[uu]) continue;
Temp[++Count] = node(Hash[v], v);
}
std::sort(Temp + 1, Temp + Count + 1);
for (int i = 2; i <= Count; ++i)
if (Temp[i].Value == Temp[i - 1].Value)
Ctrl[i] = 1;
memset(F, 0, sizeof(F));
F[0][0] = 1;
int Step = 0;
for (int t = Start1[u]; t; t = Edge1[t].Next)
{
int v = Edge1[t].To;
if (v ==Fa)
continue;
for (int j = 0; j < 1 << Count; ++j)
F[(Step + 1) & 1][j] = 0;
for (int j = 0; j < 1 << Count; ++j)
for (int k = 1; k <= Count; ++k)
{
if ((j >> (k - 1)) & 1)
continue;
if (Ctrl[k] && ((j >> (k - 2)) & 1) == 0)
continue;
F[(Step + 1) & 1][j | (1 << (k - 1))] += 1LL * F[Step & 1][j] * Dp[v][Temp[k].Index] % Mod;
F[(Step + 1) & 1][j | (1 << (k - 1))] %= Mod;
}
for (int j = 0; j < 1 << Count; ++j)
{
F[(Step + 1) & 1][j] += F[Step & 1][j];
F[(Step + 1) & 1][j] %= Mod;
}
++Step;
}
Dp[u][uu] = F[Step & 1][(1 << Count) - 1];
}
return;
}

CF762F Tree nesting的更多相关文章

  1. 『Tree nesting 树形状压dp 最小表示法』

    Tree nesting (CF762F) Description 有两个树 S.T,问 S 中有多少个互不相同的连通子图与 T 同构.由于答案 可能会很大,请输出答案模 1000000007 后的值 ...

  2. [Educational Round 17][Codeforces 762F. Tree nesting]

    题目连接:678F - Lena and Queries 题目大意:给出两个树\(S,T\),问\(S\)中有多少连通子图与\(T\)同构.\(|S|\leq 1000,|T|\leq 12\) 题解 ...

  3. [Codeforces]762F - Tree nesting

    题目大意:给出一棵n个点的树和一棵m个点的树,问第一棵树有多少个连通子树与第二棵树同构.(n<=1000,m<=12) 做法:先找出第二棵树的重心(可能为边),以这个重心为根,可以避免重复 ...

  4. Educational Codeforces Round 17F Tree nesting

    来自FallDream的博客,未经允许,请勿转载, 谢谢. 给你两棵树,一棵比较大(n<=1000),一棵比较小(m<=12) 问第一棵树中有多少个连通子树和第二棵同构. 答案取膜1e9+ ...

  5. Educational Codeforces Round 17

    Educational Codeforces Round 17 A. k-th divisor 水题,把所有因子找出来排序然后找第\(k\)大 view code //#pragma GCC opti ...

  6. [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法

    二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...

  7. SAP CRM 树视图(TREE VIEW)

    树视图可以用于表示数据的层次. 例如:SAP CRM中的组织结构数据可以表示为树视图. 在SAP CRM Web UI的术语当中,没有像表视图(table view)或者表单视图(form view) ...

  8. 无限分级和tree结构数据增删改【提供Demo下载】

    无限分级 很多时候我们不确定等级关系的层级,这个时候就需要用到无限分级了. 说到无限分级,又要扯到递归调用了.(据说频繁递归是很耗性能的),在此我们需要先设计好表机构,用来存储无限分级的数据.当然,以 ...

  9. 2000条你应知的WPF小姿势 基础篇<45-50 Visual Tree&Logic Tree 附带两个小工具>

    在正文开始之前需要介绍一个人:Sean Sexton. 来自明尼苏达双城的软件工程师.最为出色的是他维护了两个博客:2,000Things You Should Know About C# 和 2,0 ...

随机推荐

  1. centos7 追加python3 + 使用pip + virtualenv

    一.安装Python3的方法: 首先安装依赖包: yum -y groupinstall "Development tools" yum -y install zlib-devel ...

  2. Java EE javax.servlet ServletContainerInitializer接口

    ServletContainerInitializer接口 public interface ServletContainerInitializer 一.介绍 该接口,允许在 web 应用程序的启动阶 ...

  3. Huge Packet Drops (Tx drops) Observed on NetScaler

    Huge Packet Drops (Tx drops) Observed on NetScaler 来源  https://support.citrix.com/article/CTX215843 ...

  4. 动画方案 Lottie 学习(二)之实战

    代码 $('.success-info-title').append('<p class="normal_finish" id="normal_finish_ani ...

  5. Java学习 面向对象(下)——Java疯狂讲义th4

    面向对象(下) [TOC] 包装类 通过包装类可以把8个基本类型的值包装成对象使用. 自动拆箱.自动装箱 把字符串类型值转换成基本类型的值: 包装类的 parseXxx(String s)静态方法 包 ...

  6. 1 .net 用事物提交执行存储过程

    public static void delModelReturn(string performanceId,DateTime? effectiveDate=null) { using (SqlCon ...

  7. spring boot 使用RedisTemplate

    1导入包 <!-- redis --> <dependency> <groupId>org.springframework.boot</groupId> ...

  8. Linux:rm可不可以实现删除所有文件,除了demo文件

    方法1: shopt -s extglob #开启扩展通配符 rm -rf !(demo) #删除除了demo的文件 方法2: find /test -not -name "demo&quo ...

  9. fragment初步认识

  10. Linux用户组管理及用户权限2

    用户.组和权限管理    Multi-tasks,Multi-Users,多任务,多用户的计算机    每个使用者:        用户标识.密码:            Authentication ...