2017ACM暑期多校联合训练 - Team 1 1001 HDU 6033 Add More Zero (数学)
Problem Description
There is a youngster known for amateur propositions concerning several mathematical hard problems.
Nowadays, he is preparing a thought-provoking problem on a specific type of supercomputer which has ability to support calculations of integers between 0 and (2m−1) (inclusive).
As a young man born with ten fingers, he loves the powers of 10 so much, which results in his eccentricity that he always ranges integers he would like to use from 1 to 10k (inclusive).
For the sake of processing, all integers he would use possibly in this interesting problem ought to be as computable as this supercomputer could.
Given the positive integer m, your task is to determine maximum possible integer k that is suitable for the specific supercomputer.
Input
The input contains multiple test cases. Each test case in one line contains only one positive integer m, satisfying 1≤m≤105.
Output
For each test case, output "Case #x: y" in one line (without quotes), where x indicates the case number starting from 1 and y denotes the answer of corresponding case.
Sample Input
1
64
Sample Output
Case #1: 0
Case #2: 19
分析:
其实就是一个公式对应的求解过程,在m已知的情况下求k,其关系式为:
10k=2m-1
看到这个式子首先想到用对数公式来化简,但是因为等式右面的式子是2^m-1这样的话是没有办法化简得,有没有办法解决呢?
我们注意到一点就是不管2的几次幂,其最后的一位数字都是在2,4,6,8这几个数字中循环,所以尽管将其结果后面减去的哪个1不考虑也不会影响其十位数的大小,这样的话转换成10的幂次也不会改变。
关系式就变成10k=2m两边同时取以10为底的对数然后将k表示出来就是:k=m*log10(2);
#include<iostream>
#include <cmath>
#include <stdio.h>
using namespace std;
int main()
{
int m,Case=0;
while(~scanf("%d",&m))
{
Case++;
int k=(int)(m*log10(2));
printf("Case #%d: %d\n", Case, k);
}
return 0;
}
2017ACM暑期多校联合训练 - Team 1 1001 HDU 6033 Add More Zero (数学)的更多相关文章
- 2017ACM暑期多校联合训练 - Team 7 1009 HDU 6128 Inverse of sum (数学计算)
题目链接 Problem Description There are n nonnegative integers a1-n which are less than p. HazelFan wants ...
- 2017ACM暑期多校联合训练 - Team 6 1001 HDU 6096 String (字符串处理 字典树)
题目链接 Problem Description Bob has a dictionary with N words in it. Now there is a list of words in wh ...
- 2017ACM暑期多校联合训练 - Team 5 1001 HDU 6085 Rikka with Candies (模拟)
题目链接 Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, s ...
- 2017ACM暑期多校联合训练 - Team 2 1011 HDU 6055 Regular polygon (数学规律)
题目链接 **Problem Description On a two-dimensional plane, give you n integer points. Your task is to fi ...
- 2017ACM暑期多校联合训练 - Team 2 1001 HDU 6045 Is Derek lying? (模拟)
题目链接 Problem Description Derek and Alfia are good friends.Derek is Chinese,and Alfia is Austrian.Thi ...
- 2017ACM暑期多校联合训练 - Team 4 1004 HDU 6070 Dirt Ratio (线段树)
题目链接 Problem Description In ACM/ICPC contest, the ''Dirt Ratio'' of a team is calculated in the foll ...
- 2017ACM暑期多校联合训练 - Team 9 1005 HDU 6165 FFF at Valentine (dfs)
题目链接 Problem Description At Valentine's eve, Shylock and Lucar were enjoying their time as any other ...
- 2017ACM暑期多校联合训练 - Team 9 1010 HDU 6170 Two strings (dp)
题目链接 Problem Description Giving two strings and you should judge if they are matched. The first stri ...
- 2017ACM暑期多校联合训练 - Team 8 1006 HDU 6138 Fleet of the Eternal Throne (字符串处理 AC自动机)
题目链接 Problem Description The Eternal Fleet was built many centuries ago before the time of Valkorion ...
随机推荐
- 【OSG】 报错:丢失osg100-osgDB.dll
如果你bin目录已经添加到了环境变量的path里面,还报这个错的话. 或许你重启一下电脑就可以了..我就这么解决的.
- C#常见函数
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- 关于c中的一些新函数
localtime 和 localtime_s: localtime:localtime(const time_t * _Time) time_t t;struct tm *local;time(&a ...
- 【EF】Entity Framework Core 2.0 特性介绍和使用指南
阅读目录 前言 获取和使用 新特性 项目升级和核心API变化 下一步计划 遗憾的地方 回到目录 前言 这是.Net Core 2.0生态生态介绍的最后一篇,EF一直是我喜欢的一个ORM框架,随着版本升 ...
- 【python】windows7下怎样安装whl
windows7 python2.7 1.用管理员方式打开cmd 2.首先通过pip命令安装wheel 如果提示’pip’不是内部或外部命令,也不是可运行的程序或批处理文件 ①将python安装目录下 ...
- 当提交的表单类型为multipart/form-data时 后台的dopost则不能使用 setCharset来进行解码了 需要单独对字段使用 原始的new String(req.name("ISO-8859-1"),"utf-8")形式解码了
当提交的表单类型为multipart/form-data时 后台的dopost则不能使用 setCharset来进行解码了 需要单独对字段使用 原始的new String(req.name(" ...
- BZOJ 1818 内部白点(离散化+树状数组)
此题就是1227 的弱化版. 画个图或者稍微证明一下就能够知道,一定不会超过一次变换. 那么我们只需要统计有多少个白点会变黑,换句话说就是有多少个白点上下左右都有黑点. 离散化横坐标,因为没有黑点在的 ...
- Luogu1155 NOIP2008双栈排序(并查集)
两个位置i和j上的元素不能被放进同一个栈的充要条件显然是存在k使i<j<k且ak<ai<aj.由此在保证合法的情况下贪心地放就是正确的了. 至于如何判断,可以记一下后缀最小值, ...
- 基于jquery的移动端JS无缝切换
Html: <div id="slide-box-1"> <ul> <li> <a href="javascript:void( ...
- [bzoj] 2049 洞穴勘探 || LCT
原题 这是一道LCT的板子题. 至于LCT--link cut tree,也叫动态树,用splay实现动态连边的树. 预备知识: 实边:一个非叶节点,向它的儿子中的一个连一条特殊的边,称为实边;该非叶 ...