Description

David the Great has just become the king of a desert country. To win the respect of his people, he decided to build channels all over his country to bring water to every village. Villages which are connected to his capital village will be watered. As the dominate ruler and the symbol of wisdom in the country, he needs to build the channels in a most elegant way.

After days of study, he finally figured his plan out. He wanted the average cost of each mile of the channels to be minimized. In other words, the ratio of the overall cost of the channels to the total length must be minimized. He just needs to build the necessary channels to bring water to all the villages, which means there will be only one way to connect each village to the capital.

His engineers surveyed the country and recorded the position and altitude of each village. All the channels must go straight between two villages and be built horizontally. Since every two villages are at different altitudes, they concluded that each channel between two villages needed a vertical water lifter, which can lift water up or let water flow down. The length of the channel is the horizontal distance between the two villages. The cost of the channel is the height of the lifter. You should notice that each village is at a different altitude, and different channels can't share a lifter. Channels can intersect safely and no three villages are on the same line.

As King David's prime scientist and programmer, you are asked to find out the best solution to build the channels.

Input

There are several test cases. Each test case starts with a line containing a number N (2 <= N <= 1000), which is the number of villages. Each of the following N lines contains three integers, x, y and z (0 <= x, y < 10000, 0 <= z < 10000000). (x, y) is the position of the village and z is the altitude. The first village is the capital. A test case with N = 0 ends the input, and should not be processed.

Output

For each test case, output one line containing a decimal number, which is the minimum ratio of overall cost of the channels to the total length. This number should be rounded three digits after the decimal point.

Sample Input

4
0 0 0
0 1 1
1 1 2
1 0 3
0

Sample Output

1.000

https://blog.csdn.net/guozizheng001/article/details/51044710
我看这个博客学的讲的特别好
 #include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <ctype.h>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <iostream>
using namespace std;
#define bug printf("******\n");
const int maxn = 1e6 + ;
#define rtl rt<<1
#define rtr rt<<1|1
const double eps=1e-;
int n,vis[];
double mp[][],p[];
struct node {
double x,y,z;
}a[];
double cost(double mid,int i,int j){
return mid*mp[i][j]-1.0*(abs(a[i].z-a[j].z));
}
int pri(double mid) {
for (int i= ;i<=n ;i++) vis[i]=,p[i]=-;
p[]=;
double ret=;
for (int i= ;i<n ;i++ ) {
int idx=-;
double maxx=-110000000.0;
for (int j= ;j<n ;j++){
if (vis[j]) continue;
if (p[j]>maxx) {
maxx=p[j];
idx=j;
}
}
if (idx==-) break;
vis[idx]=;
ret+=maxx;
for (int j= ;j<n ;j++) {
if (vis[j]) continue;
p[j]=max(p[j],cost(mid,idx,j));
}
}
if (ret>eps) return ;
return ;
}
int main() {
while(scanf("%d",&n),n){
for (int i= ;i<n ;i++)
scanf("%lf%lf%lf",&a[i].x,&a[i].y,&a[i].z);
for (int i= ;i<n ;i++)
for (int j=i ;j<n ;j++)
mp[i][j]=mp[j][i]=sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y));
double high=,low=,mid;
int m=;
while(m--){
mid=(low+high)/;
if (pri(mid)) high=mid;
else low=mid;
}
printf("%.3f\n",low);
}
return ;
}

Desert King 最小比率生成树 (好题)的更多相关文章

  1. poj 2728 Desert King(最小比率生成树,迭代法)

    引用别人的解释: 题意:有n个村庄,村庄在不同坐标和海拔,现在要对所有村庄供水,只要两个村庄之间有一条路即可, 建造水管距离为坐标之间的欧几里德距离(好象是叫欧几里德距离吧),费用为海拔之差 现在要求 ...

  2. poj 2728 Desert King (最小比例生成树)

    http://poj.org/problem?id=2728 Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissio ...

  3. POJ2728 最小比率生成树/0-1分数规划/二分/迭代(迭代不会)

    用01分数规划 + prime + 二分 竟然2950MS惊险的过了QAQ 前提是在TLE了好几次下过的 = = 题目意思:有n个村庄,村庄在不同坐标和海拔,现在要对所有村庄供水,只要两个村庄之间有一 ...

  4. poj2728 最小比率生成树——01分数规划

    题目大意: 有n个村庄,村庄在不同坐标和海拔,现在要对所有村庄供水, 只要两个村庄之间有一条路即可,建造水管距离为坐标之间的欧几里德距离,费用为海拔之差, 现在要求方案使得费用与距离的比值最小,很显然 ...

  5. 【bzoj2429】[HAOI2006]聪明的猴子(图论--最小瓶颈生成树 模版题)

    题意:有M只猴子,他们的最大跳跃距离为Ai.树林中有N棵树露出了水面,给出了它们的坐标.问有多少只猴子能在这个地区露出水面的所有树冠上觅食. 解法:由于要尽量多的猴子能到达所有树冠,便用Kruskal ...

  6. poj2728(最小比率生成树)

    poj2728 题意 给出 n 个点的坐标和它的高度,求一颗生成树使得树上所连边的两点高度差之和除以距离之和最小. 分析 01分数规划+最小生成树. 对于所有的边,在求最小生成树过程中有选或不选的问题 ...

  7. poj2728 Desert King(最小生成树+01分数规划=最优比率生成树)

    题意 n个点完全图,每个边有两个权值,求分数规划要求的东西的最小值. (n<=1000) 题解 心态炸了. 堆优化primT了. 普通的就过了. 我再也不写prim了!!!! 咳咳 最优比率生成 ...

  8. 【POJ2728】Desert King(分数规划)

    [POJ2728]Desert King(分数规划) 题面 vjudge 翻译: 有\(n\)个点,每个点有一个坐标和高度 两点之间的费用是高度之差的绝对值 两点之间的距离就是欧几里得距离 求一棵生成 ...

  9. Desert King

    poj2728:http://poj.org/problem?id=2728 题意:给你n的点,每一个点会有一个坐标(x,y),然后还有一个z值,现在上你求一棵生成树,是的这棵生成树的所有边的费用/所 ...

随机推荐

  1. vue中如何实现pdf文件预览?

    今天产品提出一个优化的需求,就是之前我们做的图片展示就是一个img标签搞定,由于我们做的是海外后台管理系统,那边的人上传的文件时pdf格式,vue本事是不支持这种格式文件展示的,于是就google搜索 ...

  2. Jedis 与 MySQL的连接线程安全问题

    Jedis的连接是非线程安全的 下面是set命令的执行过程,简单分为两个过程,客户端向服务端发送数据,服务端向客户端返回数据,从下面的代码来看:从建立连接到执行命令是没有进行任何并发同步的控制 pub ...

  3. JQuery文本框验证

    <" CODEPAGE="936"%><!--#include file="conncon.asp"--><!--#in ...

  4. nodejs笔记--Events篇(二)

    常用事件 /* 调用events模块,获取events.EventEmitter对象 */ var EventEmitter = require('events').EventEmitter; var ...

  5. NFC进场通信总结概述

    简介 本文介绍Nokia设备所支持的近场通信技术(NFC)及相关的功能.旨在为使用 Qt/Symbian/Java™ API为Nokia手机开发应用的开发者 刚开始接触NFC开发时提供有用的信息. 什 ...

  6. Python中的global和nonlocal

    在Python中,一个变量的scope范围从小到大分成4部分:Local Scope(也可以看成是当前函数形成的scope),Enclosing Scope(简单来说,就是外层函数形成的scope), ...

  7. Check the string

    A has a string consisting of some number of lowercase English letters 'a'. He gives it to his friend ...

  8. Java学习个人备忘录之数组工具类

    下面主要讲解一个针对数组操作的工具类. a.java -- 工具类文件 //按理来说要先编译本文件, 然后再编译主函数 class ArrayTool { /* 获取整型数组的最大值 */ publi ...

  9. 2017秋-软件工程第四次作业(2)-结对使用TDD框架完成单元测试

    第一次接触“单元测试”这个要求,我和队友学习了一些示例后开始操作.如下展示一些建立单元测试的过程.Step1:右键单击[解决方案]->左键单击[添加(D)]->[新建项目(N)]. Ste ...

  10. c# 编译的dll看不见注释问题

    1.项目属性---->生成----->勾选XML文档文件: 2.使用的时候该文件和dll放在一块.