题目描述

给出一张无向图,求它的一棵生成树,使得选出的所有边的方差最小。输出这个最小方差。

输入

第一行两个正整数N,M
接下来M行,每行三个正整数Ui,Vi,Ci
N<=100,M<=2000,Ci<=100

输出

输出最小的标准差,保留四位小数。

样例输入

3 3
1 2 1
2 3 2
3 1 3

样例输出

0.5000


题解

最小生成树

由于Ci很小,因此选出边的总和不会很大。可以考虑枚举这个总和(即平均值)。

然后把每条边的边权看作 $|c_i-\bar c|$ ,跑最小生成树,记录选出的边,然后根据实际选择计算实际方差(注意这里算平均值用的不是枚举的总和,而是实际计算的平均值)

简单证明一下这样为什么是对的:当枚举的总和是最终答案的总和时,选出的边一定是最终答案,而每次计算的答案不会出现错误情况,因此它们的最小值一定是答案。

细节处理中,可以先对所有边按照权值排序,在枚举总和(平均值)时,记录第一个大于等于这个平均值的边的位置 $p$ 。这样,这个位置 $p$ 左边的代价就是 $\bar c-c_i$ ,右边的代价就是 $c_i-\bar c$ ,使用二路归并的方法依次取最小值即可。这个方法可以避免每次都对所有边排序。

时间复杂度 $O(m\log m+cnm)$

#include <cmath>
#include <cstdio>
#include <algorithm>
using namespace std;
struct data
{
int x , y , z;
bool operator<(const data &a)const {return z < a.z;}
}a[2010];
bool v[2010];
int f[110];
int find(int x)
{
return x == f[x] ? f[x] : f[x] = find(f[x]);
}
int main()
{
int n , m , i , j , k , now , p = 1;
double s , t , ans = 1 << 30;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d%d" , &a[i].x , &a[i].y , &a[i].z);
sort(a + 1 , a + m + 1);
for(i = 0 ; i <= (n - 1) * 100 ; i ++ )
{
while(p <= m && a[p].z * (n - 1) < i) p ++ ;
for(j = 1 ; j <= n ; j ++ ) f[j] = j;
for(j = 1 ; j <= m ; j ++ ) v[j] = 0;
j = p - 1 , k = p , s = t = 0;
while(j || k <= m)
{
if(k > m || (j && i - a[j].z * (n - 1) < a[k].z * (n - 1) - i)) now = j -- ;
else now = k ++ ;
if(find(a[now].x) != find(a[now].y))
f[f[a[now].x]] = f[a[now].y] , s += a[now].z , v[now] = 1;
}
s /= (n - 1);
for(j = 1 ; j <= m ; j ++ )
if(v[j])
t += (a[j].z - s) * (a[j].z - s);
ans = min(ans , t);
}
printf("%.4lf\n" , sqrt(ans / (n - 1)));
return 0;
}

【bzoj3754】Tree之最小方差树 最小生成树的更多相关文章

  1. bzoj3754 Tree之最小方差树 最小生成树+推性质

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3754 题解 感觉这个思路挺神仙的. 后悔没有好好观察题目的数据范围,一直把 \(n\) 和 \ ...

  2. [BZOJ3080]Minimum Variance Spanning Tree/[BZOJ3754]Tree之最小方差树

    [BZOJ3080]Minimum Variance Spanning Tree/[BZOJ3754]Tree之最小方差树 题目大意: 给定一个\(n(n\le50)\)个点,\(m(m\le1000 ...

  3. [BZOJ3754]Tree之最小方差树

    3754: Tree之最小方差树 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 402  Solved: 152[Submit][Status][Di ...

  4. 【枚举】【最小生成树】【kruscal】bzoj3754 Tree之最小方差树

    发现,若使方差最小,则使Σ(wi-平均数)2最小即可. 因为权值的范围很小,所以我们可以枚举这个平均数,每次把边权赋成(wi-平均数)2,做kruscal. 但是,我们怎么知道枚举出来的平均数是不是恰 ...

  5. bzoj 3754: Tree之最小方差树 模拟退火+随机三分

    题目大意: 求最小方差生成树.N<=100,M<=2000,Ci<=100 题解: 首先我们知道这么一个东西: 一些数和另一个数的差的平方之和的最小值在这个数是这些数的平均值时取得 ...

  6. 【BZOJ 3754】: Tree之最小方差树

    题目链接: TP 题解: 都是骗子233,我还以为是什么神奇的算法. 由于边权的范围很小,最小生成树和最大生成树之间的总和差不会太大,所以可以枚举边权和,再直接根据方差建最小生成树,每次更新答案即可. ...

  7. BZOJ 3754 Tree之最小方差树 MST

    Description Wayne 在玩儿一个很有趣的游戏.在游戏中,Wayne 建造了N 个城市,现在他想在这些城市间修一些公路,当然并不是任意两个城市间都能修,为了道路系统的美观,一共只有M 对城 ...

  8. 【BZOJ 3754】Tree之最小方差树

    http://www.lydsy.com/JudgeOnline/problem.php?id=3754 核心思想:暴力枚举所有可能的平均数,对每个平均数排序后Kruskal. 正确的答案一定是最小的 ...

  9. BZOJ 3754 Tree之最小方差树

    枚举平均数. mdzz编译器. #include<iostream> #include<cstdio> #include<cstring> #include< ...

随机推荐

  1. 十分钟搭建和使用ELK日志分析系统

    前言 为满足研发可视化查看测试环境日志的目的,准备采用EK+filebeat实现日志可视化(ElasticSearch+Kibana+Filebeat).题目为“十分钟搭建和使用ELK日志分析系统”听 ...

  2. 20145207 myeclipse测试

    实验博客  

  3. spring-boot、mybatis整合

    一.MyBatis 是一款优秀的持久层框架,它支持定制化 SQL.存储过程以及高级映射.MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集.MyBatis 可以使用简单的 X ...

  4. 「知识学习&日常训练」莫队算法(一)(Codeforce Round #340 Div.2 E)

    题意 (CodeForces 617E) 已知一个长度为\(n\)的整数数列\(a[1],a[2],-,a[n]\),给定查询参数\(l,r\),问\([l,r]\)内,有多少连续子段满足异或和等于\ ...

  5. hdu2544最短路(floyd基础)

    最短路 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  6. XSS--编码绕过,qcms,鲶鱼cms

    一.编码绕过 1)HTML进制编码 标签中的某些属性值可以使用html十进制.十六进制表示 2)JavaScript编码 JavaScript支持unicode.八进制.十六进制.十进制等 3)URL ...

  7. Selenium 入门到精通系列:六

    Selenium 入门到精通系列 PS:Checkbox方法 例子 HTML: <html> <head> <title>测试页面</title> &l ...

  8. Selenium基础之--01(将浏览器最大化,设置浏览器固定宽、高,操控浏览器前进、后退)

    1,将浏览器最大化 我们知道调用启动的浏览器不是全屏的,这样不会影响脚本的执行,但是有时候会影响我们"观看"脚本的执行. coding=utf-8 from selenium im ...

  9. Linux命令大全(非常全,史上最全)

    最近学习Linux,最大的体验就是它的很多东西都需要由命令来进行控制,下面是我总结的一些命令,供大家参考: 系统信息   arch 显示机器的处理器架构 uname -m 显示机器的处理器架构 una ...

  10. java实现网页截图

    使用工具 java+selenium+phantomjs /chromedriver /firefox 1.分别是 phantomjs插件 google截图插件 和 firefox火狐浏览器截图插件2 ...