Problem Description

Hzz loves aeroplane chess very much. The chess map contains N+1 grids labeled from 0 to N. Hzz starts at grid 0. For each step he throws a dice(a dice have six faces with equal probability to face up and the numbers on the faces are 1,2,3,4,5,6). When Hzz is at grid i and the dice number is x, he will moves to grid i+x. Hzz finishes the game when i+x is equal to or greater than N.

There are also M flight lines on the chess map. The i-th flight line can help Hzz fly from grid Xi to Yi (0<Xi<Yi<=N) without throwing the dice. If there is another flight line from Yi, Hzz can take the flight line continuously. It is granted that there is no two or more flight lines start from the same grid.

Please help Hzz calculate the expected dice throwing times to finish the game.

Input

There are multiple test cases.

Each test case contains several lines.

The first line contains two integers N(1≤N≤100000) and M(0≤M≤1000).

Then M lines follow, each line contains two integers Xi,Yi(1≤Xi<Yi≤N).

The input end with N=0, M=0.

Output

For each test case in the input, you should output a line indicating the expected dice throwing times. Output should be rounded to 4 digits after decimal point.

Sample Input

2 0

8 3

2 4

4 5

7 8

0 0

Sample Output

1.1667

2.3441

Description(CHN)

在一个 \(1*n\) 的格子上掷色子,从 \(0\) 点出发,掷了多少前进几步,同时有些格点直接相连,即若 \(a\) ,\(b\) 相连,当落到 \(a\) 点时直接飞向 \(b\) 点。求走到 \(n\) 或超出 \(n\) 期望掷色子次数

\(n≤100000\)

Solution

期望倒推

设 \(f[i]\) 表示当前到达第 \(i\) 号点,距离游戏结束的期望是多少

显然,\(f[n]=f[n+1]=...=f[n+5]=0\)

然后反着枚举 \(i\) ,如果当前点有直通机,就直接等于直通的那个点的期望

否则,枚举这一次骰子的点数,\(f[i]=\sum_{x=1}^6\frac{f[i+x]+1}{6}\)

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=100000+10;
int n,m,fly[MAXN];
db f[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
if(!n&&!m)break;
memset(fly,-1,sizeof(fly));
for(register int i=1;i<=m;++i)
{
int u,v;read(u);read(v);
fly[u]=v;
}
for(register int i=0;i<=n+5;++i)f[i]=0.0;
for(register int i=n-1;i>=0;--i)
if(!(~fly[i]))
for(register int x=1;x<=6;++x)f[i]+=f[i+x]/6.0+1/6.0;
else f[i]=f[fly[i]];
printf("%.4f\n",f[0]);
}
return 0;
}

【刷题】HDU 4405 Aeroplane chess的更多相关文章

  1. HDU 4405 Aeroplane chess 期望dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4405 Aeroplane chess Time Limit: 2000/1000 MS (Java/ ...

  2. hdu 4405 Aeroplane chess(简单概率dp 求期望)

    Aeroplane chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  3. hdu 4405 Aeroplane chess (概率DP)

    Aeroplane chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  4. hdu 4405 Aeroplane chess(概率+dp)

    Problem Description Hzz loves aeroplane chess very much. The chess map contains N+ grids labeled to ...

  5. [ACM] hdu 4405 Aeroplane chess (概率DP)

    Aeroplane chess Problem Description Hzz loves aeroplane chess very much. The chess map contains N+1 ...

  6. HDU 4405 Aeroplane chess 概率DP 难度:0

    http://acm.hdu.edu.cn/showproblem.php?pid=4405 明显,有飞机的时候不需要考虑骰子,一定是乘飞机更优 设E[i]为分数为i时还需要走的步数期望,j为某个可能 ...

  7. HDU 4405 Aeroplane chess(期望)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4405 题意:从0走到n,每次走之前掷一次筛子,掷出几点就向前走几点,走到大于等于n的地方就停止.但是, ...

  8. HDU 4405 Aeroplane chess:期望dp

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4405 题意: 你在下简化版飞行棋... 棋盘为一个线段,长度为n. 上面有m对传送门,可以直接将你从a ...

  9. HDU 4405 Aeroplane chess (概率DP)

    题意:你从0开始,要跳到 n 这个位置,如果当前位置是一个飞行点,那么可以跳过去,要不然就只能掷骰子,问你要掷的次数数学期望,到达或者超过n. 析:概率DP,dp[i] 表示从 i  这个位置到达 n ...

随机推荐

  1. 【转载】深入研究Windows内部原理绝对经典的资料

    原文:深入研究Windows内部原理绝对经典的资料 另一篇资料:深入研究Windows内部原理系列 (为了方便大家下,我打包了放在一下地址: 1-6:http://download.csdn.net/ ...

  2. Mac OS下Android Studio:/dev/kvm not found

    在配置模拟器时出现该报错,在网上找了很多教程都没能解决,当然可能是这些教程并不适用于我.总的来说,还是要“对症下药”! 解决方法如下: 点击“系统偏好设置”-“安全性与隐私”,然后会在“通用”这个界面 ...

  3. 用wireshark查看 tcpdump 抓取的mysql交互数据

    用tcpdump  抓取 mysql客户端与服务器端的交互 1开启tcpdump tcpdump -i eth0 -s 3000 port 3306 -w ~/sql.pcap 先故意输入一个错误的密 ...

  4. django1.11+xadmin的搭建

    1.git clone https://github.com/sshwsfc/xadmin.git或者直接下载zip包 2..在项目根目录下建一个extra_apps的包,将xadmin源码包存放在里 ...

  5. Java开发工程师(Web方向) - 01.Java Web开发入门 - 第2章.HTTP协议简介

    第2章--HTTP协议简介 HTTP协议简介 Abstract: HTTP协议的特性,HTTP请求/响应的过程,HTTP请求/响应的报文格式等知识,最后会演示如何通过Chrome提供的开发者工具,去跟 ...

  6. 油田 (Oil Deposits UVA - 572)

    题目描述: 原题:https://vjudge.net/problem/UVA-572 题目思路: 1.图的DFS遍历 2.二重循环找到相邻的八个格子 AC代码: #include <iostr ...

  7. [Clr via C#读书笔记]Cp17委托

    Cp17委托 简单介绍 delegate回调函数机制,可以理解存储函数地址的变量类型: 类型安全: 引用类型支持逆变和协变: 回调 静态方法,实例方法 委托的本质 所有的委托都派生自System.Mu ...

  8. Faster RCNN论文解析

    Faster R-CNN由一个推荐区域的全卷积网络和Fast R-CNN组成, Fast R-CNN使用推荐区域.整个网络的结构如下: 1.1 区域推荐网络 输入是一张图片(任意大小), 输出是目标推 ...

  9. python函数学习之装饰器

    装饰器 装饰器的本质是一个python函数,它的作用是在不对原函数做任何修改的同时,给函数添加一定的功能.装饰器的返回值也是一个函数对象. 分类: 1.不带参数的装饰器函数: def wrapper( ...

  10. JAVA集合类(大公司面试喜欢问的)

     分类: 核心JAVA(11)  版权声明:本文为博主原创文章,未经博主允许不得转载. 看了一些所谓大公司的Java面试问题,发现对于JAVA集合类的使用都比较看重似的,而自己在这方面还真的是所真甚少 ...