[CODE FESTIVAL 2017]Poor Penguin
题意:在一个$n\times m$的网格上,每个格子是薄冰或冰山(网格外什么都没有),有一片薄冰上站着一只企鹅,对于薄冰$(i,j)$,如果不满足($(i-1,j),(i+1,j)$都有东西或$(i,j-1),(i,j+1)$都有东西),那么它会消失,并且会发生连锁反应,现在你可以把一些冰山削成薄冰,问最少多少次操作可以使得企鹅掉入水中
先考虑什么时候企鹅所在的薄冰会消失(以下的图片全部来自官方题解)
如果一个格子的右下角没有冰山,那么它最终会消失,对其他方向也是这样

如果能把整个网格用十字分开,使得某两个相对区域中都没有冰山,那么另外两个区域可以被分开考虑,且之后互相独立,这种分割可以递归地进行


所以对于一个包含企鹅的矩形,我们DP出让它独立于其他格子所需的最小操作次数,再枚举删掉企鹅的四个方向的冰山来更新答案即可
设$f_{i,j,k,l}$表示让$(i,j),(k,l)$这个矩形独立的最小操作次数,枚举它里面的一个点$(x,y)$,以它为中心画十字分开原矩形来转移即可
总时间复杂度$O((nm)^3)$,感觉Atcoder评测机挺快的?
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
void fmin(int&a,int b){
if(b<a)a=b;
}
int s[41][41],f[41][41][41][41];
char str[41];
int get(int i,int j,int k,int l){
if(i>k||j>l)return 0;
return s[k][l]-s[i-1][l]-s[k][j-1]+s[i-1][j-1];
}
int main(){
int n,m,i,j,k,l,x,y,sx,sy,ans;
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++){
scanf("%s",str+1);
for(j=1;j<=m;j++){
if(str[j]=='P'){
sx=i;
sy=j;
}
s[i][j]=s[i-1][j]+s[i][j-1]-s[i-1][j-1]+(str[j]=='#');
}
}
memset(f,63,sizeof(f));
ans=f[0][0][0][0];
f[1][1][n][m]=0;
for(i=1;i<=sx;i++){
for(j=1;j<=sy;j++){
for(k=n;k>=sx;k--){
for(l=m;l>=sy;l--){
fmin(ans,f[i][j][k][l]+min(min(get(i,j,sx,sy),get(i,sy,sx,l)),min(get(sx,j,k,sy),get(sx,sy,k,l))));
for(x=i;x<=k;x++){
for(y=j;y<=l;y++){
if(sx<=x&&sy<=y)fmin(f[i][j][x][y],f[i][j][k][l]+get(i,y+1,x,l)+get(x+1,j,k,y));
if(sx<=x&&y<=sy)fmin(f[i][y][x][l],f[i][j][k][l]+get(i,j,x,y-1)+get(x+1,y,k,l));
if(x<=sx&&y<=sy)fmin(f[x][y][k][l],f[i][j][k][l]+get(i,y,x-1,l)+get(x,j,k,y-1));
if(x<=sx&&sy<=y)fmin(f[x][j][k][y],f[i][j][k][l]+get(i,j,x-1,y)+get(x,y+1,k,l));
}
}
}
}
}
}
printf("%d",ans);
}
[CODE FESTIVAL 2017]Poor Penguin的更多相关文章
- 【赛时总结】 ◇赛时·IV◇ CODE FESTIVAL 2017 Final
◇赛时-IV◇ CODE FESTIVAL 2017 Final □唠叨□ ①--浓浓的 Festival 气氛 ②看到这个比赛比较特别,我就看了一看--看到粉粉的界面突然开心,所以就做了一下 `(* ...
- CODE FESTIVAL 2017 qual B B - Problem Set【水题,stl map】
CODE FESTIVAL 2017 qual B B - Problem Set 确实水题,但当时没想到map,用sort后逐个比较解决的,感觉麻烦些,虽然效率高很多.map确实好写点. 用map: ...
- CODE FESTIVAL 2017 qual B C - 3 Steps【二分图】
CODE FESTIVAL 2017 qual B C - 3 Steps 题意:给定一个n个结点m条边的无向图,若两点间走三步可以到,那么两点间可以直接连一条边,已经有边的不能连,问一共最多能连多少 ...
- [AtCoder Code Festival 2017 QualB D/At3575] 101 to 010 - dp
[Atcoder Code Festival 2017 QualB/At3575] 101 to 010 有一个01序列,每次可以选出一个101,使其变成010,问最优策略下能操作几次? 考虑像 11 ...
- 【AtCoder】CODE FESTIVAL 2017 Final
A - AKIBA 模拟即可 代码 #include <bits/stdc++.h> #define fi first #define se second #define pii pair ...
- CODE FESTIVAL 2017 qual B
昨晚因为有点事就去忙了,没打后悔啊 A - XXFESTIVAL Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem ...
- 【题解】Popping Balls AtCoder Code Festival 2017 qual B E 组合计数
蒟蒻__stdcall终于更新博客辣~ 一下午+一晚上=一道计数题QAQ 为什么计数题都这么玄学啊QAQ Prelude 题目链接:这里是传送门= ̄ω ̄= 下面我将分几个步骤讲一下这个题的做法,大家不 ...
- AtCoder Code Festival 2017 Team Relay J - Indifferent
题目大意:共$2n$个价格$p_i$.两人轮流取.你每次取最大的,对方每次随机取.问你取的期望和是多少. 题解:从小到大排序,$\sum\limits_{i=0}^{2n-1} \frac{i*p_i ...
- Atcoder CODE FESTIVAL 2017 qual C D - Yet Another Palindrome Partitioning 回文串划分
题目链接 题意 给定一个字符串(长度\(\leq 2e5\)),将其划分成尽量少的段,使得每段内重新排列后可以成为一个回文串. 题解 分析 每段内重新排列后是一个回文串\(\rightarrow\)该 ...
随机推荐
- 转 一次完整地http请求
作者:斯巴达克斯 时间:January 11, 2014 分类:WEB 声明:本文章中的说法仅是个人理解总结,不一定完全正确,但是可以有助于理解. 关于HTTP协议可以参考以下: HTTP协议漫谈 h ...
- thread线程栈size及局部变量最大可分配size【转】
转自:http://blog.csdn.net/sunny04/article/details/46805261 版权声明:本文为博主原创文章,未经博主允许不得转载. 进程是操作系统的最小资源管理单元 ...
- Bzoj-2301 [HAOI2011]Problem b 容斥原理,Mobius反演,分块
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 题意:多次询问,求有多少对数满足 gcd(x,y)=k, a<=x<=b ...
- python按比例随机切分数据
在机器学习或者深度学习中,我们常常碰到一个问题是数据集的切分.比如在一个比赛中,举办方给我们的只是一个带标注的训练集和不带标注的测试集.其中训练集是用于训练,而测试集用于已训练模型上跑出一个结果,然后 ...
- Load balancer does not have available server for client:xxx
今天在搭建一个springcloud项目在搭建以zuul为网关的时候,项目抛了一个异常, com.netflix.zuul.exception.ZuulException: Forwarding er ...
- 12-7 NSDictionary
原文:http://rypress.com/tutorials/objective-c/data-types/nsdictionary NSDictionary 如同NSSet,NSDictionar ...
- shell常见操作整理(更新)
查看文件第20到30行的内容 法一:[root@oldboy ~]# seq 100 > ett.txt [root@oldboy ~]# head -30 ett.txt | tail -11 ...
- jQuery 中的 unbind() 方法
jQuery 中的 unbind() 方法是 bind() 方法的反向操作,从每一个匹配的元素中删除绑定的事件. 语法结构: unbind([type][, data]); type是事件类型,dat ...
- django “如何”系列6:如何部署django
django满满的快捷方法是的web开发者活的更轻松,但是,如果你不能部署你的站点的话,这是一点用都没有的.不违初衷,部署的简化也是django的一大目标.你可以有几个方法轻松的部署django 由于 ...
- 51Nod 1022 石子归并 V2(区间DP+四边形优化)
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1022 题目大意: N堆石子摆成一个环.现要将石子有次序地合并成 ...