校内题,不给传送门了。

以前做完NOIp2013的火柴排队那道题后,当时很担心NOIp会出那种题,因为贪心的规则能不能看出来真的要看运气。但是这类题做多了后发现其实那道题的规则其实是很多题都已经用到了。

给定一个无序序列,要求相邻之间交换已达到有序,这样子总的逆序对的和就是答案。但是这道题要求上多了一层,即要求分为两段有序即可。这就需要人为规定各个数字的大小。

比如题目样例,3 5 4 2 1,逆序对为8,排序后为 1 2 3 4 5,假设这里1是整体最大的数,即2 3 4 5 1应该是最后排完序的,似乎要再跑一次逆序对?

完全不必,考虑从1到$N$递增的枚举,对于每个数,假设这个数是最小的,那么设这个数在数组中的下标为$pos$,那么如果把他排到队末,增加的逆序对数为$N-pos$,而减少的逆序对数则为$pos-1$,这样不断枚举就可得到本题的最后答案。

//OJ 1602
//by Cydiater
//2016.10.7
#include <iostream>
#include <cstring>
#include <string>
#include <algorithm>
#include <queue>
#include <map>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <iomanip>
using namespace std;
#define ll long long
#define up(i,j,n)        for(int i=j;i<=n;i++)
#define down(i,j,n)        for(int i=j;i>=n;i--)
const int MAXN=1e6+5;
const int oo=0x3f3f3f3f;
inline ll read(){
    char ch=getchar();ll x=0,f=1;
    while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
ll N,a[MAXN],c[MAXN],tmp=0,ans=10000000000000LL,b[MAXN];
namespace solution{
    inline int lowbit(int i){return (i)&(-i);}
    void init(){
        N=read();
        up(i,1,N)b[a[i]=read()]=i;
    }
    void insert(int num,int flag){
        for(int i=num;i<=N;i+=lowbit(i))c[i]+=flag;
    }
    ll get(ll num){
        ll ttt=0;
        for(int i=num;i>=1;i-=lowbit(i))ttt+=c[i];
        return ttt;
    }
    void slove(){
        down(i,N,1){
            tmp+=get(a[i]-1);
            insert(a[i],1);
        }
        up(i,1,N){
            tmp-=(b[i]-1);
            tmp+=(N-b[i]);
            ans=min(ans,tmp);
        }
        cout<<ans<<endl;
    }
}
int main(){
    //freopen("input.in","r",stdin);
    //freopen("out.out","w",stdout);
    using namespace solution;
    init();
    slove();
    return 0;
}

[USACO2009 NOV GOLD]奶牛的图片的更多相关文章

  1. BZOJ 1770: [Usaco2009 Nov]lights 燈( 高斯消元 )

    高斯消元解xor方程组...暴搜自由元+最优性剪枝 -------------------------------------------------------------------------- ...

  2. bzoj 2017 [Usaco2009 Nov]硬币游戏 动态规划

    [Usaco2009 Nov]硬币游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 431  Solved: 240[Submit][Status] ...

  3. BZOJ_2017_[Usaco2009 Nov]硬币游戏_博弈论+DP

    BZOJ_2017_[Usaco2009 Nov]硬币游戏_博弈论+DP Description 农夫约翰的奶牛喜欢玩硬币游戏,因此他发明了一种称为“Xoinc”的两人硬币游戏. 初始时,一个有N(5 ...

  4. bzoj1770: [Usaco2009 Nov]lights 燈(折半搜索)

    1770: [Usaco2009 Nov]lights 燈 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1153  Solved: 564[Submi ...

  5. BZOJ_[usaco2007 Nov]relays 奶牛接力跑_离散化+倍增弗洛伊德

    BZOJ_[usaco2007 Nov]relays 奶牛接力跑_离散化+倍增弗洛伊德 Description FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们 ...

  6. 【BZOJ1706】[usaco2007 Nov]relays 奶牛接力跑 矩阵乘法

    [BZOJ1706][usaco2007 Nov]relays 奶牛接力跑 Description FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们的日常锻炼项 ...

  7. BZOJ 1706: [usaco2007 Nov]relays 奶牛接力跑

    Description FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们的日常锻炼项目.至于进行接力跑的地点 自然是在牧场中现有的T(2 <= T < ...

  8. bzoj2019 [Usaco2009 Nov]找工作

    Description 奶牛们没钱了,正在找工作.农夫约翰知道后,希望奶牛们四处转转,碰碰运气.而且他还加了一条要求:一头牛在一个城市最多只能赚D(1 <= D <= 1,000)美元,然 ...

  9. bzoj2018 [Usaco2009 Nov]农场技艺大赛

    Description Input 第1行:10个空格分开的整数: N, a, b, c, d, e, f, g, h, M Output 第1行:满足总重量最轻,且用度之和最大的N头奶牛的总体重模M ...

随机推荐

  1. IDEA【 MyBatis Plugin】 插件免费完美运行

    mybatis_plus.jar 包 .Install plugin from disk...导入即能用. BaiDu云: 链接: http://pan.baidu.com/s/1geKtTbP 密码 ...

  2. 多线程处理中Future的妙用

    java 中Future是一个未来对象,里面保存这线程处理结果,它像一个提货凭证,拿着它你可以随时去提取结果.在两种情况下,离开Future几乎很难办.一种情况是拆分订单,比如你的应用收到一个批量订单 ...

  3. scrollHeight,scrollLeft,offsetHeight,offsetLeft

    scrollHeight:内部元素的绝对高度,包含内部元素的隐藏的部分scrollWidth:内部元素的绝对宽度,包含内部元素的隐藏的部分 scrollLeft:设置或获取位于对象左边界和窗口中目前可 ...

  4. CentOS6.6搭建LNMP环境

    CentOS6.6搭建LNMP环境 1.设置yum源,本地安装依赖包 1 yum -y install gcc gcc-c++ automake autoconf libtool make 2.下载依 ...

  5. Maven的生命周期和插件

    首先解释下maven build等 Maven build是这个插件让你自己去配置执行目标的.Maven clean 清除上一次Maven执行的结果Maven generate-sources会根据p ...

  6. 模块(modue)的概念:

    在计算机程序的开发过程中,随着程序代码越写越多,在一个文件里代码就会越来越长,越来越不容易维护. 为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里,这样,每个文件包含的代码就相对较少,很 ...

  7. git标签

    git标签 如果你达到一个重要的阶段,并希望永远记住那个特别的提交快照,你可以使用 git tag 给它打上标签.-a 选项意为"创建一个带注解的标签". 添加标签命令: $ gi ...

  8. 在Winform中播放视频等【DotNet,C#】

    在项目中遇到过这样的问题,就是如何在Winform中播放视频.当时考察了几种方式,第一种是直接使用Windows Media Player组件,这种最简单:第二种是利用DirectX直接在窗体或者控件 ...

  9. 使用kuernetes提供高可用的logstash服务

    在kubernetes集群中部署logstash步骤如下: 1:logstash安装文件(目前最新版本2.3.4): 2:编写Dockerfile及执行点脚本文件run.sh,并且修改logstash ...

  10. Yii2命名规则

    module id /controller id/action id的规则PostManagerController=>post-manageractionAddValue =>add-v ...