题目描述

给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[2], …, A[2k - 1]的中位数。[color=red]即[/color]前1,3,5,……个数的中位数。

输入输出格式

输入格式:

输入文件median.in的第1行为一个正整数N,表示了序列长度。

第2行包含N个非负整数A[i] (A[i] ≤ 10^9)。

输出格式:

输出文件median.out包含(N + 1) / 2行,第i行为A[1], A[2], …, A[2i – 1]的中位数。

输入输出样例

输入样例#1:

7
1 3 5 7 9 11 6
输出样例#1:

1
3
5
6

说明

对于20%的数据,N ≤ 100;

对于40%的数据,N ≤ 3000;

对于100%的数据,N ≤ 100000。

用treap写中位数。

 /*by SilverN*/
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
using namespace std;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n;
struct node{
int lc,rc;
int rand,size;
int cnt,w;
}t[mxn];
int nct=,rot=;
void update(int rt){
t[rt].size=t[t[rt].lc].size+t[t[rt].rc].size+t[rt].cnt;
return;
}
void rturn(int &rt){
int tmp=t[rt].lc;
t[rt].lc=t[tmp].rc;
t[tmp].rc=rt;
update(rt);update(tmp);
rt=tmp;
return;
}
void lturn(int &rt){
int tmp=t[rt].rc;
t[rt].rc=t[tmp].lc;
t[tmp].lc=rt;
update(rt);update(tmp);
rt=tmp;
return;
}
void add(int &rt,int v){
if(!rt){
rt=++nct;
t[rt].w=v;
t[rt].cnt=;
t[rt].rand=rand();
t[rt].size=;
t[rt].lc=t[rt].rc=;
return;
}
t[rt].size++;
if(t[rt].w==v) t[rt].cnt++;
else if(v<t[rt].w){
add(t[rt].lc,v);
if(t[rt].rand>t[t[rt].lc].rand)rturn(rt);
}
else {
add(t[rt].rc,v);
if(t[rt].rand>t[t[rt].rc].rand)lturn(rt);
}
return;
}
int query(int rt,int k){
if(k<=t[t[rt].lc].size)return query(t[rt].lc,k);
if(k>t[t[rt].lc].size+t[rt].cnt)return query(t[rt].rc,k-t[t[rt].lc].size-t[rt].cnt);
return t[rt].w;
}
int main(){
n=read();
int i,j,x;
srand(n+);
for(i=;i<=n;i++){
x=read();
add(rot,x);
if(i&)printf("%d\n",query(rot,(i+)/));
}
return ;
}

洛谷P1168 中位数的更多相关文章

  1. 洛谷——P1168 中位数

    P1168 中位数 题目描述 给出一个长度为NN的非负整数序列$A_i$​,对于所有1 ≤ k ≤ (N + 1),输出$A_1, A_3, …, A_{2k - 1}A1​,A3​,…,A2k−1​ ...

  2. 洛谷P1168 中位数——set/线段树

    先上一波链接 https://www.luogu.com.cn/problem/P1168 这道题我们有两种写法 第一种呢是线段树,我们首先需要将原本的数据离散化,线段树维护的信息就是区间内有多少个数 ...

  3. 洛谷 P1168 中位数(优先队列)

    题目链接 https://www.luogu.org/problemnew/show/P1168 解题思路 这个题就是求中位数,但是暴力会tle,所以我们用一种O(nlogn)的算法来实现. 这里用到 ...

  4. [洛谷P1168]中位数(Splay)/(主席树)

    Description 给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[2], -, A[2k - 1]的中位数.即前1,3,5,--个数的 ...

  5. 洛谷 P1168 中位数

    题目描述 给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[3], …, A[2k - 1]的中位数.[color=red]即[/color] ...

  6. 洛谷—— P1168 中位数

    https://www.luogu.org/problem/show?pid=1168 题目描述 给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], ...

  7. 洛谷P1168中位数

    传送门啦 基本思想就是二分寻找答案,然后用树状数组去维护有几个比这个二分出来的值大,然后就没有了: 数据要离散,这个好像用map也可以,但是不会: 那怎么离散呢? 我们先把a数组读入并复制给s数组,然 ...

  8. AC日记——中位数 洛谷 P1168

    题目描述 给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[2], …, A[2k - 1]的中位数.[color=red]即[/color] ...

  9. 洛谷 [TJOI2010]中位数

    题目链接 题解 比较水.. 常见套路,维护两个堆 Code #include<bits/stdc++.h> #define LL long long #define RG register ...

随机推荐

  1. java:如何用代码控制H2 Database启动

    1.纯手动start/stop package com.cnblogs.yjmyzz.h2; import java.sql.Connection; import java.sql.DriverMan ...

  2. swift邮箱手机验证

    import UIKit class Validate: NSObject { //邮箱.手机验证 enum ValidatedType { case Email case PhoneNumber } ...

  3. unix环境高级编程基础知识之第二篇(3)

    看了unix环境高级编程第三章,把代码也都自己敲了一遍,另主要讲解了一些IO函数,read/write/fseek/fcntl:这里主要是c函数,比较容易,看多了就熟悉了.对fcntl函数讲解比较到位 ...

  4. 判断Laravel Eloquent获取数据结果集是否为空

    在使用Laravel Eloquent模型时,我们可能要判断取出的结果集是否为空,但我们发现直接使用is_null或empty是无法判段它结果集是否为空的. var_dump之后我们很容易发现,即使取 ...

  5. JAVA反射其实就是那么一回事

    概念:什么是反射 java反射机制: JAVA反射机制是在运行状态中, 对于任意一个类,都能够知道这个类的所有属性和方法: 对于任意一个对象,都能够调用它的任意一个方法和属性: 这种动态获取的信息以及 ...

  6. JQuery功能查询页

    JQuery在前端开发中已经是常用的不能再常用的库了.最近的项目中使用到了JQuery,我第一次接触它的时候为了学习,把常用的操作指令用比较小的字体写在一页word上,打印出来贴在桌子上,用来让自己时 ...

  7. C# 退出应用程序办法

    Application.Exit();//好像只在主线程可以起作用,而且当有线程,或是阻塞方法的情况下,很容易失灵   this.Close();//只是关闭当前窗体.   Application.E ...

  8. 用SpringMvc实现Excel导出功能

    以前只知道用poi导出Excel,最近用了SpringMvc的Excel导出功能,结合jxl和poi实现,的确比只用Poi好,两种实现方式如下: 一.结合jxl实现: 1.引入jxl的所需jar包: ...

  9. T4模板——一个神奇的代码生成器

    利用T4模板,可以很方便的从数据库映射成Model模型,相当于动软等功效.但动软是可以直接生成三层,抽象工厂的,T4没那么牛叉,所以我们一般只用作生成Modle或者Server等指定方法了. 废话少说 ...

  10. JavaScript instanceof 运算符深入剖析

    简介: 随着 web 的发展,越来越多的产品功能都放在前端进行实现,增强用户体验.而前端开发的主要语言则是 JavaScript.学好 JavaScript 对开发前端应用已经越来越重要.在开发复杂产 ...