题目

Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors.

OJ's undirected graph serialization:

Nodes are labeled uniquely.

We use # as a separator for each node, and , as a separator for node label and each neighbor of the node.

As an example, consider the serialized graph {0,1,2#1,2#2,2}.

The graph has a total of three nodes, and therefore contains three parts as separated by #.

  1. First node is labeled as 0. Connect node 0 to both nodes 1 and 2.
  2. Second node is labeled as 1. Connect node 1 to node 2.
  3. Third node is labeled as 2. Connect node 2 to node 2 (itself), thus forming a self-cycle.

Visually, the graph looks like the following:

       1
/ \
/ \
0 --- 2
/ \
\_/ 题解:
这道题考察对图的遍历和利用HashMap拷贝的方法。
对图的遍历就是两个经典的方法DFS和BFS。BFS经常用Queue实现,DFS经常用递归实现(可改为栈实现)。
拷贝方法是用用HashMap,key存原始值,value存copy的值,用DFS,BFS方法遍历帮助拷贝neighbors的值。 先复习下DFS和BFS。 DFS(Dpeth-first Search)
顾名思义,就是深度搜索,一条路走到黑,再选新的路。
记得上Algorithm的时候,教授举得例子就是说,DFS很像好奇的小孩,你给这个小孩几个盒子套盒子,好奇的小孩肯定会一个盒子打开后继续再在这个盒子里面搜索。
等把这一套盒子都打开完,再打开第二套的。
Wikipedia上的讲解是:“Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures.
One starts at the root (selecting some arbitrary node as the root in the case of a graph) and explores as far as possible
along each branch before backtracking.”
通常来说简便的DFS写法是用递归,如果非递归的话就是栈套迭代,思想是一样的。
递归写法的DFS伪代码如下:
Input: A graph G and a root v of G
   procedure DFS(G,v):
       label v as discovered
       for all edges from v to w in G.adjacentEdges(v) do
           if vertex w is not labeled as discovered then
               recursively call DFS(G,w)
非递归写法的DFS伪代码如下:
Input: A graph G and a root v of G
   procedure DFS-iterative(G,v):
       let S be a stack
       S.push(v)
       while S is not empty
             v ← S.pop() 
             if v is not labeled as discovered:
                 label v as discovered
                 for all edges from v to w in G.adjacentEdges(v) do
                     S.push(w)

BFS(Breadth-first Search)
这个就是相对于BFS的另外一种对图的遍历方法,对于一个节点来说先把所有neighbors都检查一遍,再从第一个neighbor开始,循环往复。
由于BFS的这个特质,BFS可以帮助寻找最短路径。
Wikipedia上面对BFS的定义是:
“In graph theory, breadth-first search (BFS) is a strategy for searching in a graph
when search is limited to essentially two operations: (a) visit and
inspect a node of a graph; (b) gain access to visit the nodes that
neighbor the currently visited node. The BFS begins at a root node and
inspects all the neighboring nodes. Then for each of those neighbor
nodes in turn, it inspects their neighbor nodes which were unvisited,
and so on. Compare BFS with the equivalent, but more memory-efficient
Iterative deepening depth-first search and contrast with depth-first search.” 通常BFS用queue+循环实现,伪代码如下:
Input: A graph G and a root v of G
 1   procedure BFS(G,v) is
 2       create a queue Q
 3       create a set V
 4       add v to V
 5       enqueue v onto Q
 6       while Q is not empty loop
 7          t ← Q.dequeue()
 8          if t is what we are looking for then
 9             return t
         end if
         for all edges e in G.adjacentEdges(t) loop
            u ← G.adjacentVertex(t,e)
            if u is not in V then
                add u to V
                enqueue u onto Q
            end if
         end loop
      end loop
      return none
  end BFS
********************************************************************************************************************************
下面就是这道题的3种解题方法。 第一种实现方法是BFS的,就是先将头节点入queue,每一次queue出列一个node,然后检查这个node的所有的neighbors,如果没visited过,就入队,并更新neighbor。
然后更新新的neighbor列表。
代码如下:
 1     public UndirectedGraphNode cloneGraph(UndirectedGraphNode node) {
 2         if(node == null)
 3             return null;
 4             
 5         HashMap<UndirectedGraphNode, UndirectedGraphNode> hm = new HashMap<UndirectedGraphNode, UndirectedGraphNode>();
 6         LinkedList<UndirectedGraphNode> queue = new LinkedList<UndirectedGraphNode>();
 7         UndirectedGraphNode head = new UndirectedGraphNode(node.label);
 8         hm.put(node, head);
 9         queue.add(node);
         
         while(!queue.isEmpty()){
             UndirectedGraphNode curnode = queue.poll();
             for(UndirectedGraphNode aneighbor: curnode.neighbors){//check each neighbor
                 if(!hm.containsKey(aneighbor)){//if not visited,then add to queue
                     queue.add(aneighbor);
                     UndirectedGraphNode newneighbor = new UndirectedGraphNode(aneighbor.label);
                     hm.put(aneighbor, newneighbor);
                 }
                 
                 hm.get(curnode).neighbors.add(hm.get(aneighbor));
             }
         }
         
         return head;
     }
DFS的递归操作如下,迭代复制neighbors:
 1     public UndirectedGraphNode cloneGraph(UndirectedGraphNode node) {
 2         if(node == null)
 3             return null;
 4             
 5         HashMap<UndirectedGraphNode, UndirectedGraphNode> hm = new HashMap<UndirectedGraphNode, UndirectedGraphNode>();
 6         UndirectedGraphNode head = new UndirectedGraphNode(node.label);
 7         hm.put(node, head);
 8         
 9         DFS(hm, node);//DFS
         return head;
     }
     public void DFS(HashMap<UndirectedGraphNode, UndirectedGraphNode> hm, UndirectedGraphNode node){
         if(node == null)
             return;
             
         for(UndirectedGraphNode aneighbor: node.neighbors){ 
             if(!hm.containsKey(aneighbor)){
                 UndirectedGraphNode newneighbor = new UndirectedGraphNode(aneighbor.label);
                 hm.put(aneighbor, newneighbor);
                 DFS(hm, aneighbor);//DFS
             }
             hm.get(node).neighbors.add(hm.get(aneighbor));
         }
     }

下面一种方法是DFS的非递归方法,中点是把BFS中的queue换成stack,因为出列方法不一样了,所以遍历的线路就不一样了。代码如下:
 1     public UndirectedGraphNode cloneGraph(UndirectedGraphNode node) {
 2         if(node == null)
 3             return null;
 4             
 5         HashMap<UndirectedGraphNode, UndirectedGraphNode> hm = new HashMap<UndirectedGraphNode, UndirectedGraphNode>();
 6         LinkedList<UndirectedGraphNode> stack = new LinkedList<UndirectedGraphNode>();
 7         UndirectedGraphNode head = new UndirectedGraphNode(node.label);
 8         hm.put(node, head);
 9         stack.push(node);
         
         while(!stack.isEmpty()){
             UndirectedGraphNode curnode = stack.pop();
             for(UndirectedGraphNode aneighbor: curnode.neighbors){//check each neighbor
                 if(!hm.containsKey(aneighbor)){//if not visited,then push to stack
                     stack.push(aneighbor);
                     UndirectedGraphNode newneighbor = new UndirectedGraphNode(aneighbor.label);
                     hm.put(aneighbor, newneighbor);
                 }
                 
                 hm.get(curnode).neighbors.add(hm.get(aneighbor));
             }
         }
         
         return head;
     }
												

Clone Graph leetcode java(DFS and BFS 基础)的更多相关文章

  1. Clone Graph [LeetCode]

    Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. OJ's ...

  2. Clone Graph——LeetCode

    Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. OJ's ...

  3. 【万能的DFS和BFS基础框架】-多刷题才是硬道理!

  4. leetcode 133. Clone Graph ----- java

    Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. OJ's ...

  5. Leetcode之广度优先搜索(BFS)专题-133. 克隆图(Clone Graph)

    Leetcode之广度优先搜索(BFS)专题-133. 克隆图(Clone Graph) BFS入门详解:Leetcode之广度优先搜索(BFS)专题-429. N叉树的层序遍历(N-ary Tree ...

  6. [LeetCode] 133. Clone Graph 克隆无向图

    Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. OJ's ...

  7. LeetCode: Clone Graph 解题报告

    Clone GraphClone an undirected graph. Each node in the graph contains a label and a list of its neig ...

  8. [Leetcode Week3]Clone Graph

    Clone Graph题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/clone-graph/description/ Description Clon ...

  9. 【LeetCode】133. Clone Graph 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 DFS BFS 日期 题目地址:https://le ...

随机推荐

  1. Python学习基础知识概要

    1.输入输出 输出实例   1 2 print 'hello','world' hello world 输入实例   1 2 3 4 5 name = raw_input(); print " ...

  2. HTML5标签

    可以进行省略的标签 不允许写结束标记的标签:area(定义图像映射中的区域).base(为页面上的所有链接规定默认地址或默认目标).br.col(为表格中一个或多个列定义属性值).embed(定义嵌入 ...

  3. CSS3中flexbox如何实现水平垂直居中和三列等高布局

    最近这些天都在弥补css以及css3的基础知识,在打开网页的时候,发现了火狐默认首页上有这样一个东西.

  4. autocomplete="off" 不起作用

    首先来了解一下 表单自动填充的原理,当我们登录的时候,如果选择的记住登录密码,那么后续界面中如果有 <input type="text" name="field1& ...

  5. Android 一个对sharedpreferences 数据进行加密的开源库

    1.项目地址 https://github.com/iamMehedi/Secured-Preference-Store 2.使用方法 2.1.存数据 //存数据 SecuredPreferenceS ...

  6. 将UIview描画成虚线等.

    - (UIView *)lineView{ if (!_lineView) { _lineView = [UIView new]; // _lineView.backgroundColor = UIC ...

  7. Wintel物联网平台-Windows IoT新手入门指南

    1. 引言 近期,微软跟进物联网的速度也在不断加速,除了微软手环,.NET MicroFramework,还有一个叫做Windows IoT的项目.该项目早在今年4月份的Build大会上就提出来了,7 ...

  8. BCP笔记整理(二)

    BCP的基础用法可以参考上一篇:http://www.cnblogs.com/Gin-23333/p/5489889.html 这篇是补充一些有可能会用到,但是出场几率并不算大的几个参数 1.首先是 ...

  9. [Java入门笔记] 面向对象编程基础(一):类和对象

    什么是面向对象编程? 我们先来看看几个概念: 面向过程程序设计 面向过程,是根据事情发展的步骤,按进行的顺序过程划分,面向过程其实是最为实际的一种思考方式,可以说面向过程是一种基础的方法,它考虑的是实 ...

  10. openstack-swift云存储部署(一)

    最近因为工作的需要搭建了一套swift云存储架构 我们先来解读一下里面的技术知识点:swift服务是属于openstack中的一种组件服务,openstack中的组件服务还有keystone.Nova ...