题目:http://codeforces.com/problemset/problem/109/C

题意:一棵树n个节点,组成一个图,每条边都有权值,对于i、j、k三个数,计算所有的 i 到 j 和 i 到 k 的路径上有幸运数的三元组个数。

题解:用并查集来做,对于任意节点 i ,找出与 i 连通的且某段路径的权值是幸运数的点的个数num,则总个数即是1~n的num*(num-1).但是因为有些点之间是间接连接的,无法直接判断,所以用并查集来更新,计算出每个点的根节点的num值(额,每个点的num值也无法直接计算,因为有的间接连接的点也符合,但可以通过两点的权值计算点与 i 的不符合的点的个数,用n减去它就是所需的  num)。在后面计算总数时,遍历每个点时用其根节点的num值来计算。

这两天整个人敲题都是迷的.........

 1 #include <map>
2 #include <stack>
3 #include <queue>
4 #include <cmath>
5 #include <string>
6 #include <limits>
7 #include <cstdio>
8 #include <vector>
9 #include <cstdlib>
10 #include <cstring>
11 #include <iostream>
12 #include <algorithm>
13 #define Scc(c) scanf("%c",&c)
14 #define Scs(s) scanf("%s",s)
15 #define Sci(x) scanf("%d",&x)
16 #define Sci2(x, y) scanf("%d%d",&x,&y)
17 #define Sci3(x, y, z) scanf("%d%d%d",&x,&y,&z)
18 #define Scl(x) scanf("%I64d",&x)
19 #define Scl2(x, y) scanf("%I64d%I64d",&x,&y)
20 #define Scl3(x, y, z) scanf("%I64d%I64d%I64d",&x,&y,&z)
21 #define Pri(x) printf("%d\n",x)
22 #define Prl(x) printf("%I64d\n",x)
23 #define Prc(c) printf("%c\n",c)
24 #define Prs(s) printf("%s\n",s)
25 #define For(i,x,y) for(int i=x;i<y;i++)
26 #define For_(i,x,y) for(int i=x;i<=y;i++)
27 #define FFor(i,x,y) for(int i=x;i>y;i--)
28 #define FFor_(i,x,y) for(int i=x;i>=y;i--)
29 #define Mem(f, x) memset(f,x,sizeof(f))
30 #define LL long long
31 #define ULL unsigned long long
32 #define MAXSIZE 100005
33 #define INF 0x3f3f3f3f
34 const int mod=1e9;
35 const double PI = acos(-1.0);
36
37 using namespace std;
38
39 int pre[MAXSIZE];
40 int num[MAXSIZE];
41 int find(int x)
42 {
43 if(x!=pre[x])
44 return pre[x]=find(pre[x]);
45 return x;
46 }
47 int check(int n)
48 {
49 while(n)
50 {
51 if(n%10!=4&&n%10!=7)
52 return 0;
53 n/=10;
54 }
55 return 1;
56 }
57 void hhh(int x,int y)
58 {
59 x=find(x);
60 y=find(y);
61 if(x==y)
62 return ;
63 pre[y]=x;
64 num[x]+=num[y];
65 }
66 int main()
67 {
68 int n;
69 Sci(n);
70 For_(i,1,n)
71 {
72 num[i]=1;
73 pre[i]=i;
74 }
75
76 int a,b,c;
77 For_(i,1,n-1)
78 {
79 Sci3(a,b,c) ;
80 if(!check(c))
81 {
82 hhh(a,b);
83 }
84 }
85 LL sum=0;
86 For_(i,1,n)
87 {
88 int tmp=n-num[ find( i) ];
89 sum+=(LL)(tmp-1)*tmp;//这个地方的(LL)不能省,乘积结果应该是会超出int范围
90 }
91 Prl(sum);
92 return 0;
93 }

Lucky Tree的更多相关文章

  1. CF109 C. Lucky Tree 并查集

    Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal re ...

  2. CodeForces 109C 树形DP Lucky Tree

    赶脚官方题解写得挺清楚的说,=_= 注意数据范围用long long,否则会溢出. #include <iostream> #include <cstdio> #include ...

  3. codeforces 110E Lucky Tree

    传送门:https://codeforces.com/contest/110/problem/E 题意:给你一颗树,节点与节点之间的边有一个边权,定义只由4和7组成的数字是幸运数字,现在要你求一共有多 ...

  4. Codeforces Beta Round 84 (Div. 2 Only)

    layout: post title: Codeforces Beta Round 84 (Div. 2 Only) author: "luowentaoaa" catalog: ...

  5. CF dp 题(1500-2000难度)

    前言 从后往前刷 update 新增 \(\text{\color{red}{Mark}}\) 标记功能,有一定难度的题标记为 \(\text{\color{red}{红}}\) 色. 题单 (刷过的 ...

  6. 竞赛题解 - Broken Tree(CF-758E)

    Broken Tree(CF-758E) - 竞赛题解 贪心复习~(好像暴露了什么算法--) 标签:贪心 / DFS / Codeforces 『题意』 给出一棵以1为根的树,每条边有两个值:p-强度 ...

  7. [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法

    二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...

  8. SAP CRM 树视图(TREE VIEW)

    树视图可以用于表示数据的层次. 例如:SAP CRM中的组织结构数据可以表示为树视图. 在SAP CRM Web UI的术语当中,没有像表视图(table view)或者表单视图(form view) ...

  9. 无限分级和tree结构数据增删改【提供Demo下载】

    无限分级 很多时候我们不确定等级关系的层级,这个时候就需要用到无限分级了. 说到无限分级,又要扯到递归调用了.(据说频繁递归是很耗性能的),在此我们需要先设计好表机构,用来存储无限分级的数据.当然,以 ...

  10. 2000条你应知的WPF小姿势 基础篇<45-50 Visual Tree&Logic Tree 附带两个小工具>

    在正文开始之前需要介绍一个人:Sean Sexton. 来自明尼苏达双城的软件工程师.最为出色的是他维护了两个博客:2,000Things You Should Know About C# 和 2,0 ...

随机推荐

  1. 2022年Kubernetes CKA 认证真题解析完整版

    第一题 RBAC授权问题权重: 4% 设置配置环境:[student@node-1] $ kubectl config use-context k8s Context为部署管道创建一个新的Cluste ...

  2. form表单里的button 等元素不能使用margin: 0 auto;

    记得把form和button都设为display:block; 就能用margin: 0 auto;水平居中了

  3. angr原理与实践(三)——Arbiter:一种弥合二进制程序漏洞发现中的静态和动态鸿沟

    ​ 转载请说明出处:信安科研人 please subscribe my official wechat :信安科研人 获取更多安全资讯 原文链接:sec22-vadayath.pdf (usenix. ...

  4. Spring IOC官方文档学习笔记(三)之依赖项

    1.依赖注入 (1) 依赖注入(DI)的概念:某个bean的依赖项,由容器来负责注入维护,而非我们自己手动去维护,以此来达到bean之间解耦的目的,如下 //情况一:不使用依赖注入 public cl ...

  5. [深度学习] ncnn编译使用

    文章目录 工程 ncnn工程编译使用(cpu) ncnn工程编译使用(vulkan) 参考 工程 ncnn工程编译使用(cpu) 在linux下建立如CMakeLists文件即可编译生成ncnn工程 ...

  6. SICP:符号求导、集合表示和Huffman树(Python实现)

    绪论 到目前为止,我们已经使用过的所有复合数据,最终都是从数值出发构造起来的(比如我们在上一篇博客<SICP 2.2: 层次性数据和闭包性质(Python实现)>所介绍的链表和树就基于数来 ...

  7. jQuery烟花效果

    1.依赖源码 (function($){$.fn.fireworks=function(options){options=options||{};options.opacity=options.opa ...

  8. S2-016 CVE-2013-2251

    漏洞名称 S2-016(CVE-2013-2251) 通过操作前缀为"action:"/"redirect:"/"redirectAction:&qu ...

  9. 1.5万字总结 Redis 常见面试题&知识点

    以下内容来源于于我开源的 JavaGuide (Java学习&&面试指南,Github 130k star,370人共同参与爱完善), 万字总结,质量有保障! 这篇文章最早写于2019 ...

  10. GIS数据下载合集:遥感、土壤、气象、行政区数据...

      本文介绍GIS领域相关的各类综合数据免费获取网站,包括遥感数据.气象数据.土地数据.土壤数据.农业数据.行政区数据.社会数据.经济数据等等.   数据较多,大家可以直接通过下方目录加以总览:点击数 ...