题目:http://codeforces.com/problemset/problem/109/C

题意:一棵树n个节点,组成一个图,每条边都有权值,对于i、j、k三个数,计算所有的 i 到 j 和 i 到 k 的路径上有幸运数的三元组个数。

题解:用并查集来做,对于任意节点 i ,找出与 i 连通的且某段路径的权值是幸运数的点的个数num,则总个数即是1~n的num*(num-1).但是因为有些点之间是间接连接的,无法直接判断,所以用并查集来更新,计算出每个点的根节点的num值(额,每个点的num值也无法直接计算,因为有的间接连接的点也符合,但可以通过两点的权值计算点与 i 的不符合的点的个数,用n减去它就是所需的  num)。在后面计算总数时,遍历每个点时用其根节点的num值来计算。

这两天整个人敲题都是迷的.........

 1 #include <map>
2 #include <stack>
3 #include <queue>
4 #include <cmath>
5 #include <string>
6 #include <limits>
7 #include <cstdio>
8 #include <vector>
9 #include <cstdlib>
10 #include <cstring>
11 #include <iostream>
12 #include <algorithm>
13 #define Scc(c) scanf("%c",&c)
14 #define Scs(s) scanf("%s",s)
15 #define Sci(x) scanf("%d",&x)
16 #define Sci2(x, y) scanf("%d%d",&x,&y)
17 #define Sci3(x, y, z) scanf("%d%d%d",&x,&y,&z)
18 #define Scl(x) scanf("%I64d",&x)
19 #define Scl2(x, y) scanf("%I64d%I64d",&x,&y)
20 #define Scl3(x, y, z) scanf("%I64d%I64d%I64d",&x,&y,&z)
21 #define Pri(x) printf("%d\n",x)
22 #define Prl(x) printf("%I64d\n",x)
23 #define Prc(c) printf("%c\n",c)
24 #define Prs(s) printf("%s\n",s)
25 #define For(i,x,y) for(int i=x;i<y;i++)
26 #define For_(i,x,y) for(int i=x;i<=y;i++)
27 #define FFor(i,x,y) for(int i=x;i>y;i--)
28 #define FFor_(i,x,y) for(int i=x;i>=y;i--)
29 #define Mem(f, x) memset(f,x,sizeof(f))
30 #define LL long long
31 #define ULL unsigned long long
32 #define MAXSIZE 100005
33 #define INF 0x3f3f3f3f
34 const int mod=1e9;
35 const double PI = acos(-1.0);
36
37 using namespace std;
38
39 int pre[MAXSIZE];
40 int num[MAXSIZE];
41 int find(int x)
42 {
43 if(x!=pre[x])
44 return pre[x]=find(pre[x]);
45 return x;
46 }
47 int check(int n)
48 {
49 while(n)
50 {
51 if(n%10!=4&&n%10!=7)
52 return 0;
53 n/=10;
54 }
55 return 1;
56 }
57 void hhh(int x,int y)
58 {
59 x=find(x);
60 y=find(y);
61 if(x==y)
62 return ;
63 pre[y]=x;
64 num[x]+=num[y];
65 }
66 int main()
67 {
68 int n;
69 Sci(n);
70 For_(i,1,n)
71 {
72 num[i]=1;
73 pre[i]=i;
74 }
75
76 int a,b,c;
77 For_(i,1,n-1)
78 {
79 Sci3(a,b,c) ;
80 if(!check(c))
81 {
82 hhh(a,b);
83 }
84 }
85 LL sum=0;
86 For_(i,1,n)
87 {
88 int tmp=n-num[ find( i) ];
89 sum+=(LL)(tmp-1)*tmp;//这个地方的(LL)不能省,乘积结果应该是会超出int范围
90 }
91 Prl(sum);
92 return 0;
93 }

Lucky Tree的更多相关文章

  1. CF109 C. Lucky Tree 并查集

    Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal re ...

  2. CodeForces 109C 树形DP Lucky Tree

    赶脚官方题解写得挺清楚的说,=_= 注意数据范围用long long,否则会溢出. #include <iostream> #include <cstdio> #include ...

  3. codeforces 110E Lucky Tree

    传送门:https://codeforces.com/contest/110/problem/E 题意:给你一颗树,节点与节点之间的边有一个边权,定义只由4和7组成的数字是幸运数字,现在要你求一共有多 ...

  4. Codeforces Beta Round 84 (Div. 2 Only)

    layout: post title: Codeforces Beta Round 84 (Div. 2 Only) author: "luowentaoaa" catalog: ...

  5. CF dp 题(1500-2000难度)

    前言 从后往前刷 update 新增 \(\text{\color{red}{Mark}}\) 标记功能,有一定难度的题标记为 \(\text{\color{red}{红}}\) 色. 题单 (刷过的 ...

  6. 竞赛题解 - Broken Tree(CF-758E)

    Broken Tree(CF-758E) - 竞赛题解 贪心复习~(好像暴露了什么算法--) 标签:贪心 / DFS / Codeforces 『题意』 给出一棵以1为根的树,每条边有两个值:p-强度 ...

  7. [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法

    二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...

  8. SAP CRM 树视图(TREE VIEW)

    树视图可以用于表示数据的层次. 例如:SAP CRM中的组织结构数据可以表示为树视图. 在SAP CRM Web UI的术语当中,没有像表视图(table view)或者表单视图(form view) ...

  9. 无限分级和tree结构数据增删改【提供Demo下载】

    无限分级 很多时候我们不确定等级关系的层级,这个时候就需要用到无限分级了. 说到无限分级,又要扯到递归调用了.(据说频繁递归是很耗性能的),在此我们需要先设计好表机构,用来存储无限分级的数据.当然,以 ...

  10. 2000条你应知的WPF小姿势 基础篇<45-50 Visual Tree&Logic Tree 附带两个小工具>

    在正文开始之前需要介绍一个人:Sean Sexton. 来自明尼苏达双城的软件工程师.最为出色的是他维护了两个博客:2,000Things You Should Know About C# 和 2,0 ...

随机推荐

  1. php+nginx环境搭建

    PHP安装教程参考:https://www.cnblogs.com/kyuang/p/6801942.html 1.安装基础环境: yum -y install gcc bison bison-dev ...

  2. .NET 6 中外部引用项目NU1105异常问题解决

    .NET 6 Project中,添加了其他解决方案的工程后,本地能编译通过,代码签入后,其他同事下载代码,编译报错: 错误 NU1105 找不到"E:\Teld\01Code\TTP_CTP ...

  3. vivo 云原生容器探索和落地实践

    作者:vivo 互联网容器团队- Pan Liangbiao 本文根据潘良彪老师在"2022 vivo开发者大会"现场演讲内容整理而成.公众号回复[2022 VDC]获取互联网技术 ...

  4. 【JVM实战系列】「监控调优体系」实战开发arthas-spring-boot-starter监控你的微服务是否健康

    前提介绍 相信如果经历了我的上一篇Arthas的文章[[JVM实战系列]「监控调优体系」针对于Alibaba-Arthas的安装入门及基础使用开发实战指南]之后,相信你对Arthas的功能和使用应该有 ...

  5. DP经典例题——LIS&LCS

    DP经典例题--LIS&LCS LCS 最长公共子序列,英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列 ...

  6. Typora + PicGo + B2 Cloud Storage 实现个人免费图床

    前言 22年底终于购入了Typora,想着之前使用时候的痛点就是在图片管理这一块. 我尝试过使用在线的图床工具进行图片上传再将链接放入Typora,但说实话非常麻烦. 也尝试过就将图片保存在本地,但当 ...

  7. Kaliの一些网络操作

    KAlIの一些网络操作 arping -c 192.168.10.1 缺点是只能对单一ip进行探测,可利用shell脚本进行网段探测扫描 netdiscover -i eth0 -r 192.168. ...

  8. 【Surface Detection】Segmentation-Based Deep-Learning Approach for Surface-Defect Detection

    物体表面缺陷检测现状 传统机器学习局限性 传统机器学习方法对于特定的算法只能解决特定的问题,不够灵活,无法快速适应新产品: 不同的问题有不同的特征,当需要解决新问题时,需要重新设计特征,开发周期长: ...

  9. 数据结构——八大排序算法(java部分实现)

    java基本排序算法 1.冒泡排序 顶顶基础的排序算法之一,每次排序通过两两比较选出最小值(之后每个算法都以从小到大排序举例)图片取自:[小不点的博客](Java的几种常见排序算法 - 小不点丶 - ...

  10. 第一次Kaggle比赛心得

    新手避雷 在未组队的情况下私下共享资料属于违规行为,组队截止时间过后尤其不能这样 提交notebook的时候,kaggle的服务器只能找到前两个输出文件,所以一定要把你要提交的文件放在前两个(我们就是 ...