there exists and all

there exists

证明根号2是无理数

all

习题

3. Which of the following formal propositions says that there is no largest prime. (There may be more than one. You have to select all correct propositions.) The variables denote natural numbers. [6 points]

¬∃x∃y[Prime(x)∧¬Prime(y)∧(x<y)]

∀x∃y[Prime(x)∧Prime(y)∧(x<y)]

∀x∀y[Prime(x)∧Prime(y)∧(x<y)]

∀x∃y[Prime(y)∧(x<y)]

∃x∀y[Prime(y)∧(x<y)]

∀x∃y[Prime(x)∧(x<y)]

解析:

∀x∃y[Prime(x)∧Prime(y)∧(x<y)]

对于任意的x,存在y,使得x是素数,y是素数并且 x 小于 y。我认为这个可以表示出不存在最大素数的意思。所以是正确的。

驳斥上面的:对于任意x,x是素数,这个是错误的。如果改成存在,就是对的,但不能表现出题中的意思。

答案是 ∀x∃y[Prime(y)∧(x<y)]。

对于任意x,存在素数y,使得 x < y。即,存在比x更大的素数。

如果要改成“任意素数x,存在素数y,使得 x < y。即,存在比x更大的素数。”,该怎么改?

(∀x属于Prime)(∃y)[Prime(x)∧Prime(y)∧(x<y)]

4.

The symbol ∃!x means "There exists a unique x such that ...'' Which of the following accurately defines the expression ∃!xϕ(x)? [5 points]

∃x∀y[ϕ(x)∧[ϕ(y)⇒(x≠y)]]

∃x[ϕ(x)∧(∃y)[ϕ(y)⇒(x≠y)]]

∃x∃y[(ϕ(x)∧ϕ(y))⇒(x=y)]

[∃xϕ(x)]∧(∀y)[ϕ(y)⇒(x=y)]

∃x[ϕ(x)∧(∀y)[ϕ(y)⇒(x=y)]]

解析:

题目  ∃!xϕ(x) 的意思

只存在一个数,能使 ϕ(x) 为 True

[∃xϕ(x)]∧(∀y)[ϕ(y)⇒(x=y)]

存在一个数x使得 ϕ(x) 为 True,并且对于任意y,如果ϕ(y),那么 x=y,x未定义

∃x[ϕ(x)∧(∀y)[ϕ(y)⇒(x=y)]]

存在一个数x使得ϕ(x)成立,并且这个数x,对于任意y,如果ϕ(y),那么 x=y。

这里与上面的不同是:(∀y)[ϕ(y)⇒(x=y) 与 x 存在有关。答案是有关,因为 x = y,而上面的后方,y 是没有定义的。所以大难是这个。

5. Which of the following means "The arithmetic operation x↑y is not commutative." (↑ is just some arbitrary binary operation.) [3 points]

∀x∀y[x↑y≠y↑x]

∀x∃y[x↑y≠y↑x]

∃x∃y[x↑y≠y↑x]

∃x∀y[x↑y≠y↑x]

解析:

Commutative: ∀x∀y[x↑y=y↑x]

Not commutative: ∃x∃y[x↑y≠y↑x]

not ∀ = ∃?

解析:

Introduction to Mathematical Thinking - Week 3的更多相关文章

  1. Introduction to Mathematical Thinking - Week 6 - Proofs with Quantifieers

    Mthod of proof by cases 证明完所有的条件分支,然后得出结论. 证明任意 使用任意 注意,对于一个任意的东西,你不知道它的具体信息.比如对于任意正数,你不知道它是 1 还是 2等 ...

  2. Introduction to Mathematical Thinking - Week 9 评论答案2

    根据 rubic 打分. 1. 我认为,如果说明 m, n 是自然数,所以最小值是 1 会更清楚.所以 Clarity 我给了 3 分.其他都是 4 分,所以一共是 23 分. 2.  我给出的分数 ...

  3. Introduction to Mathematical Thinking - Week 9

    错题 评分出错 题目要求的是 "any" ,而答案只给出了一个.所以认为回答者没有理解题意,连 any 都没有理解.所以 0 分. 第一,标准的归纳法只能对自然数使用,而题目要求的 ...

  4. Introduction to Mathematical Thinking - Week 7

    Q: Why did nineteenth century mathematicians devote time to the proof of self-evident results? Selec ...

  5. Introduction to Mathematical Thinking - Week 4

    否定的逻辑 应该思考符号背后表示的逻辑,而不是像操作算术运算符一样操作逻辑符号. 比如 对于任意的 x,x属于自然数,那么 x 是偶数或者奇数:这是对的 如果使用“乘法分配律”拆分,变成“对于任意的x ...

  6. Introduction to Mathematical Thinking - Week 2

    基本数学概念 real number(实数):是有理数和无理数的总称 有理数:可以表达为两个整数比的数(a/b, b!=0) 无理数是指除有理数以外的实数 imply -- 推导出 不需要 A 能推导 ...

  7. Deep Learning and Shallow Learning

    Deep Learning and Shallow Learning 由于 Deep Learning 现在如火如荼的势头,在各种领域逐渐占据 state-of-the-art 的地位,上个学期在一门 ...

  8. Technical Development Guide---for Google

    Technical Development Guide This guide provides tips and resources to help you develop your technica ...

  9. (转)Awesome Courses

    Awesome Courses  Introduction There is a lot of hidden treasure lying within university pages scatte ...

随机推荐

  1. Python基础之字符串的练习

    练习1 #!/usr/bin/python -tt # Copyright 2010 Google Inc. # Licensed under the Apache License, Version ...

  2. cocos2d-x 3.1.1 学习笔记[11] http请求 + json解析

    //http须要引入的头文件和命名空间 #include <network/HttpClient.h> using namespace network; //json须要引入的头文件 #i ...

  3. Hybird App(一)----第一次接触

    App你知道多少 一 什么是Native App 长处 缺点 二 什么是Web App 长处 缺点 三 什么是Hybrid App 长处 缺点 四 Web AppHybrid AppNative Ap ...

  4. Android Studio+SVN配置生成apk文件

    Android Studio 是谷歌推出一个Android集成开发工具,基于IntelliJ IDEA. 类似 Eclipse ADT,Android Studio 提供了集成的 Android 开发 ...

  5. 《DirectX 9.0 3D游戏开发编程基础》 第二章 绘制流水线 读书笔记

    模型的表示 场景:物品或模型的集合 任何物品都可以用三角形网络逼近表示.我们经常用以下术语描述三角形网络:多边形(polygons).图元(primitives).网络几何单元(mesh geomet ...

  6. Android平台Native开发与JNI机制详解

    源文链接: http://mysuperbaby.iteye.com/blog/915425 一个Native Method就是一个Java调用非Java代码的接口.一个Native Method是这 ...

  7. Python pip install Twisted 出错“Command "c:\python37\python.exe -u -c "import setuptools, tokenize;__file__='C:...\\Twisted\\setup.py'.... failed with error code 1 in C:... \\Twisted"

    如标题所说: python版本是目前最新的3.7.1 结果发现并不是环境问题,而是直接 pip install Twisted 安装的包不兼容 需要手动下载兼容的扩展包Twisted-18.9.0-c ...

  8. vmware安装问题:Microsoft Runtime DLL安装程序未能完成安装

    下载vmware station 12 pro后安装,发现有以下问题:   解决方法: 在提示这个页面的时候,在运行中输入: %temp%   在打开来的文件窗口中,找到末尾为 ~setup的文件夹, ...

  9. centos 7 查看修改时区

    查看时区 date -R 修改时区 # timedatectl list-timezones # 列出所有时区 # timedatectl set-local-rtc 1 # 将硬件时钟调整为与本地时 ...

  10. 基于Virtext6平台的GTX IP核基本设置说明

    本工程基于以下条件使用: 板卡:DBF板v3.0 芯片型号:Virtex6 315T ISE版本:14.7 IP核版本: v6_gtxwizard : 1.12 一.IP核配置进行流程 第一页配置:线 ...