there exists and all

there exists

证明根号2是无理数

all

习题

3. Which of the following formal propositions says that there is no largest prime. (There may be more than one. You have to select all correct propositions.) The variables denote natural numbers. [6 points]

¬∃x∃y[Prime(x)∧¬Prime(y)∧(x<y)]

∀x∃y[Prime(x)∧Prime(y)∧(x<y)]

∀x∀y[Prime(x)∧Prime(y)∧(x<y)]

∀x∃y[Prime(y)∧(x<y)]

∃x∀y[Prime(y)∧(x<y)]

∀x∃y[Prime(x)∧(x<y)]

解析:

∀x∃y[Prime(x)∧Prime(y)∧(x<y)]

对于任意的x,存在y,使得x是素数,y是素数并且 x 小于 y。我认为这个可以表示出不存在最大素数的意思。所以是正确的。

驳斥上面的:对于任意x,x是素数,这个是错误的。如果改成存在,就是对的,但不能表现出题中的意思。

答案是 ∀x∃y[Prime(y)∧(x<y)]。

对于任意x,存在素数y,使得 x < y。即,存在比x更大的素数。

如果要改成“任意素数x,存在素数y,使得 x < y。即,存在比x更大的素数。”,该怎么改?

(∀x属于Prime)(∃y)[Prime(x)∧Prime(y)∧(x<y)]

4.

The symbol ∃!x means "There exists a unique x such that ...'' Which of the following accurately defines the expression ∃!xϕ(x)? [5 points]

∃x∀y[ϕ(x)∧[ϕ(y)⇒(x≠y)]]

∃x[ϕ(x)∧(∃y)[ϕ(y)⇒(x≠y)]]

∃x∃y[(ϕ(x)∧ϕ(y))⇒(x=y)]

[∃xϕ(x)]∧(∀y)[ϕ(y)⇒(x=y)]

∃x[ϕ(x)∧(∀y)[ϕ(y)⇒(x=y)]]

解析:

题目  ∃!xϕ(x) 的意思

只存在一个数,能使 ϕ(x) 为 True

[∃xϕ(x)]∧(∀y)[ϕ(y)⇒(x=y)]

存在一个数x使得 ϕ(x) 为 True,并且对于任意y,如果ϕ(y),那么 x=y,x未定义

∃x[ϕ(x)∧(∀y)[ϕ(y)⇒(x=y)]]

存在一个数x使得ϕ(x)成立,并且这个数x,对于任意y,如果ϕ(y),那么 x=y。

这里与上面的不同是:(∀y)[ϕ(y)⇒(x=y) 与 x 存在有关。答案是有关,因为 x = y,而上面的后方,y 是没有定义的。所以大难是这个。

5. Which of the following means "The arithmetic operation x↑y is not commutative." (↑ is just some arbitrary binary operation.) [3 points]

∀x∀y[x↑y≠y↑x]

∀x∃y[x↑y≠y↑x]

∃x∃y[x↑y≠y↑x]

∃x∀y[x↑y≠y↑x]

解析:

Commutative: ∀x∀y[x↑y=y↑x]

Not commutative: ∃x∃y[x↑y≠y↑x]

not ∀ = ∃?

解析:

Introduction to Mathematical Thinking - Week 3的更多相关文章

  1. Introduction to Mathematical Thinking - Week 6 - Proofs with Quantifieers

    Mthod of proof by cases 证明完所有的条件分支,然后得出结论. 证明任意 使用任意 注意,对于一个任意的东西,你不知道它的具体信息.比如对于任意正数,你不知道它是 1 还是 2等 ...

  2. Introduction to Mathematical Thinking - Week 9 评论答案2

    根据 rubic 打分. 1. 我认为,如果说明 m, n 是自然数,所以最小值是 1 会更清楚.所以 Clarity 我给了 3 分.其他都是 4 分,所以一共是 23 分. 2.  我给出的分数 ...

  3. Introduction to Mathematical Thinking - Week 9

    错题 评分出错 题目要求的是 "any" ,而答案只给出了一个.所以认为回答者没有理解题意,连 any 都没有理解.所以 0 分. 第一,标准的归纳法只能对自然数使用,而题目要求的 ...

  4. Introduction to Mathematical Thinking - Week 7

    Q: Why did nineteenth century mathematicians devote time to the proof of self-evident results? Selec ...

  5. Introduction to Mathematical Thinking - Week 4

    否定的逻辑 应该思考符号背后表示的逻辑,而不是像操作算术运算符一样操作逻辑符号. 比如 对于任意的 x,x属于自然数,那么 x 是偶数或者奇数:这是对的 如果使用“乘法分配律”拆分,变成“对于任意的x ...

  6. Introduction to Mathematical Thinking - Week 2

    基本数学概念 real number(实数):是有理数和无理数的总称 有理数:可以表达为两个整数比的数(a/b, b!=0) 无理数是指除有理数以外的实数 imply -- 推导出 不需要 A 能推导 ...

  7. Deep Learning and Shallow Learning

    Deep Learning and Shallow Learning 由于 Deep Learning 现在如火如荼的势头,在各种领域逐渐占据 state-of-the-art 的地位,上个学期在一门 ...

  8. Technical Development Guide---for Google

    Technical Development Guide This guide provides tips and resources to help you develop your technica ...

  9. (转)Awesome Courses

    Awesome Courses  Introduction There is a lot of hidden treasure lying within university pages scatte ...

随机推荐

  1. JAVA的IO编程:管道流

    掌握线程通讯流(管道流)的使用 管道流的主要作用是可以进行两个线程间的通讯,分为管道输入流(PipeOutputStream)和管道输出流(PipeInputStream). 如果要想进行管道输出,则 ...

  2. Android设置拍照或者上传本地图片

    效果例如以下: 看代码: MainActivity类中: package com.example.ceshidemo; import java.io.ByteArrayOutputStream; im ...

  3. 预装WIN8改装WIN7之BIOS设置

    不少预装WIN8/10的朋友觉得WIN8/10不好用,想改装WIN7,可改装之后常常出现各种问题,甚至不能启动,往往是BIOS设置不当. 本文以联想小新V2000 预装WIN8.1中文版为例,说说WI ...

  4. EF中多表公共字段,以及设置EntityBase使所有实体类继承自定义类

    使用EF框架访问数据库时,如果某些表具有公共字段,例如在审核流程中,对于各类申请单资料的创建人.创建时间.修改人.修改时间,这些可能多表都需要的字段,如果在每个实体中进行赋值操作显然是类似和重复的,下 ...

  5. NIO之DatagramChannel

    Java NIO中的DatagramChannel是一个能收发UDP包的通道.操作步骤: 1)打开 DatagramChannel 2)接收/发送数据 同样它也支持NIO的非阻塞模式操作,例如: pu ...

  6. NodeJS CSV导出文件名和内容乱码解决

    // 解决不同浏览器下载文件名称乱码 var userAgent = (req.headers['user-agent']||'').toLowerCase(); res.set('Content-T ...

  7. 28. Search a 2D Matrix 【easy】

    28. Search a 2D Matrix [easy] Write an efficient algorithm that searches for a value in an mx n matr ...

  8. Unity3d Serialize问题

    备忘: 1. ScriptableOjbect中,由于Serialization的原因,不能使用基类引用来存储子类对象,这样都会导致数据丢失 2. 无法直接对Unity的数据如,vector3, qu ...

  9. 外部jar包 @Service 无法注解无法扫描问题

    在确保spring 配置 无误的情况下,如: <context:component-scan base-package="your.can.pakeage"></ ...

  10. c++ telescoping constructor is NOT supported until c++11

    Telescoping constructor: see Effective Java 2nd Edition Item 2 If you want to use telescoping constr ...