皮克定理:

  在一个多边形中。用I表示多边形内部的点数,E来表示多边形边上的点数,S表示多边形的面积。

  满足:S:=I+E/2-1;

解决这一类题可能运用到的:

  求E,一条边(x1,y1,x2,y2)上的点数(包括两个顶点)=gcd(abs(x1-x2),abs(y1-y2))+1;

  求S:刚开始做POJ2954的时候莫名其妙一直WA,用了海伦公式求面积,后来又改用割补法,还是WA。发现面积还是用叉积算的好。

在八十中走廊里看过的书都忘光了啊...这么典型的叉积运用都会选择小学方法...不过至今没弄明白为什么海伦公式和割补法的误差那么大...


POJ2954 

 program poj2954;
var x1,y1,x2,y2,x3,y3,e:longint;
s:extended; function gcd(x,y:longint):longint;
begin
if y= then exit(x) else
exit(gcd(y,x mod y));
end; function calc_area(x1,y1,x2,y2,x3,y3:longint):extended;
begin
exit(abs((x2-x1)*(y3-y1)-(x3-x1)*(y2-y1))/);
end; function solve(x1,y1,x2,y2:longint):longint;
begin
exit(gcd(abs(x1-x2),abs(y1-y2))+);
end; begin
//assign(input,'poj2954.in');reset(input);
//assign(output,'a.out');rewrite(output);
while not eof do
begin
readln(x1,y1,x2,y2,x3,y3);
if (x1=)and(y1=)and(x2=)and(y2=)and(x3=)and(y3=) then halt;
s:=calc_area(x1,y1,x2,y2,x3,y3);
e:=solve(x1,y1,x2,y2)+solve(x1,y1,x3,y3)+solve(x2,y2,x3,y3)-;
writeln(trunc(s-e/+));
end;
end.

POJ1265

 program poj1265;
const maxn=;
type point=record x,y:longint;end;
var t,test,n,e,i,tx,ty:longint;
s:extended;
a:array[-..maxn]of point; function gcd(x,y:longint):longint;
begin
if y= then exit(x) else
exit(gcd(y,x mod y));
end; function cross(p0,p1,p2:point):double;
begin
exit((p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y));
end; begin
//assign(input,'poj1265.in');reset(input);
readln(test);
for t:= to test do
begin
readln(n);
a[].x:=;a[].y:=;
for i:= to n do
begin
readln(tx,ty);
a[i].x:=a[i-].x+tx;
a[i].y:=a[i-].y+ty;
end;
e:=;
for i:= to n- do inc(e,gcd(abs(a[i].x-a[i+].x),abs(a[i].y-a[i+].y)));
s:=;
for i:= to n do s:=s+cross(a[],a[i-],a[i])/;
s:=abs(s);
writeln('Scenario #',t,':');
writeln(trunc(s+-e/),' ',e,' ',s::);
writeln;
end;
end.

[POJ2954&POJ1265]皮克定理的应用两例的更多相关文章

  1. poj1265&&2954 [皮克定理 格点多边形]【学习笔记】

    Q:皮克定理这种一句话的东西为什么还要写学习笔记啊? A:多好玩啊... PS:除了蓝色字体之外都是废话啊...  Part I 1.顶点全在格点上的多边形叫做格点多边形(坐标全是整数) 2.维基百科 ...

  2. Area---poj1265(皮克定理+多边形求面积)

    题目链接:http://poj.org/problem?id=1265 题意是:有一个机器人在矩形网格中行走,起始点是(0,0),每次移动(dx,dy)的偏移量,已知,机器人走的图形是一个多边形,求这 ...

  3. 洛谷 P2735 电网 Electric Fences Label:计算几何--皮克定理

    题目描述 在本题中,格点是指横纵坐标皆为整数的点. 为了圈养他的牛,农夫约翰(Farmer John)建造了一个三角形的电网.他从原点(0,0)牵出一根通电的电线,连接格点(n,m)(0<=n& ...

  4. USACO 3.4 Electric Fence 皮克定理

    题意:在方格纸上画出一个三角形,求三角形里面包含的格点的数目 因为其中一条边就是X轴,一开始想的是算出两条边对应的数学函数,然后枚举x坐标值求解.但其实不用那么麻烦. 皮克定理:给定顶点坐标均是整点( ...

  5. Gym 101873G - Water Testing - [皮克定理]

    题目链接:http://codeforces.com/gym/101873/problem/G 题意: 在点阵上,给出 $N$ 个点的坐标(全部都是在格点上),将它们按顺序连接可以构成一个多边形,求该 ...

  6. 【TOJ 5103】Electric Fence(皮克定理)

    描述 In this problem, `lattice points' in the plane are points with integer coordinates. In order to c ...

  7. POJ 1265 /// 皮克定理+多边形边上整点数+多边形面积

    题目大意: 默认从零点开始 给定n次x y上的移动距离 组成一个n边形(可能为凹多边形) 输出其 内部整点数 边上整点数 面积 皮克定理 多边形面积s = 其内部整点in + 其边上整点li / 2 ...

  8. Codeforces-GYM101873 G Water Testing 皮克定理

    题意: 给定一个多边形,这个多边形的点都在格点上,问你这个多边形里面包含了几个格点. 题解: 对于格点多边形有一个非常有趣的定理: 多边形的面积S,内部的格点数a和边界上的格点数b,满足如下结论: 2 ...

  9. POJ 2954 /// 皮克定理+叉积求三角形面积

    题目大意: 给定三角形的三点坐标 判断在其内部包含多少个整点 题解及讲解 皮克定理 多边形面积s = 其内部整点in + 其边上整点li / 2 - 1 那么求内部整点就是 in = s + 1 - ...

随机推荐

  1. guacamole实现剪切复制

    主要功能是实现把堡垒机的内容复制到浏览器端,把浏览器端的文本复制到堡垒机上. 借助一个中间的文本框,现将堡垒机内容复制到一个文本框,然后把文本框内容复制出来.或者将需要传递到堡垒机的内容先复制到文本框 ...

  2. centos linux 因别名问题引起的麻烦及解决技巧

    老男孩儿-19期 L005-13节中分享.自己整理后发到自己微博中留档. 原文:http://oldboy.blog.51cto.com/2561410/699046 实例:老男孩linux实战培训第 ...

  3. GreenMail邮件测试服务器

    GreenMail邮件测试服务器 http://blog.csdn.net/jackiehff/article/details/8741988 这个目前没有需求,所以暂不研究

  4. Qt 蓝牙部分翻译

    这是我第一次尝试翻译技术文档,自己英语太烂,一直不敢尝试,感谢生活,让我勇敢迈出这第一步. 大部分都是直译,如有不妥,还请制导. Qt Bluetooth The Bluetooth API prov ...

  5. 第十六篇 Python之迭代器与生成器

    一.迭代器 一. 递归和迭代 生活实例说明什么是递归和迭代 A想去腾达大厦,问B怎么走路,B 说我不知道,我给你问问C,C也不知道,C又去问D,D知道,把路告诉了C,C又告诉B,B最后告诉A, 这就是 ...

  6. 孤荷凌寒自学python第七十三天开始写Python的第一个爬虫3

    孤荷凌寒自学python第七十三天开始写Python的第一个爬虫3 (完整学习过程屏幕记录视频地址在文末) 今天在上一天的基础上继续完成对我的第一个代码程序的书写. 直接上代码.详细过程见文末屏幕录像 ...

  7. Paper Reading - Show and Tell: Lessons learned from the 2015 MSCOCO Image Captioning Challenge

    Link of the Paper: https://arxiv.org/abs/1609.06647 A Correlative Paper: Show and Tell: A Neural Ima ...

  8. [PocketFlow]解决在coco上mAP非常低的bug

    1.问题 继上次训练挂起的bug后,又遇到了现在评估时AP非常低的bug.具体有多低呢?Pelee论文中提到,用128的batchsize大小在coco数据集上训练70K次迭代后,AP@0.5:0.9 ...

  9. sqlserver2012 查询远程数据库

    EXEC sp_addlinkedserver 'LinkName','','SQLOLEDB','121.43.177.236'EXEC sp_addlinkedsrvlogin 'LinkName ...

  10. 软工实践 - 第二十六次作业 Beta 冲刺(4/7)

    队名:起床一起肝活队 组长博客:https://www.cnblogs.com/dawnduck/p/10124816.html 作业博客:班级博客本次作业的链接 组员情况 组员1(队长):白晨曦 过 ...