pandas索引操作
Pandas的索引操作
索引对象Index
1. Series和DataFrame中的索引都是Index对象
示例代码:
print(type(ser_obj.index))
print(type(df_obj2.index)) print(df_obj2.index)
运行结果:
<class 'pandas.indexes.range.RangeIndex'>
<class 'pandas.indexes.numeric.Int64Index'>
Int64Index([0, 1, 2, 3], dtype='int64')
2. 索引对象不可变,保证了数据的安全
示例代码:
# 索引对象不可变
df_obj2.index[0] = 2
运行结果:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-23-7f40a356d7d1> in <module>()
1 # 索引对象不可变
----> 2 df_obj2.index[0] = 2 /Users/Power/anaconda/lib/python3.6/site-packages/pandas/indexes/base.py in __setitem__(self, key, value)
1402
1403 def __setitem__(self, key, value):
-> 1404 raise TypeError("Index does not support mutable operations")
1405
1406 def __getitem__(self, key): TypeError: Index does not support mutable operations
常见的Index种类
- Index,索引
- Int64Index,整数索引
- MultiIndex,层级索引
- DatetimeIndex,时间戳类型
Series索引
1. index 指定行索引名
示例代码:
ser_obj = pd.Series(range(5), index = ['a', 'b', 'c', 'd', 'e'])
print(ser_obj.head())
运行结果:
a 0
b 1
c 2
d 3
e 4
dtype: int64
2. 行索引
ser_obj[‘label’], ser_obj[pos]
示例代码:
# 行索引
print(ser_obj['b'])
print(ser_obj[2])
运行结果:
1
2
3. 切片索引
ser_obj[2:4], ser_obj[‘label1’: ’label3’]
注意,按索引名切片操作时,是包含终止索引的。
示例代码:
# 切片索引
print(ser_obj[1:3])
print(ser_obj['b':'d'])
运行结果:
b 1
c 2
dtype: int64
b 1
c 2
d 3
dtype: int64
4. 不连续索引
ser_obj[[‘label1’, ’label2’, ‘label3’]]
示例代码:
# 不连续索引
print(ser_obj[[0, 2, 4]])
print(ser_obj[['a', 'e']])
运行结果:
a 0
c 2
e 4
dtype: int64
a 0
e 4
dtype: int64
5. 布尔索引
示例代码:
# 布尔索引
ser_bool = ser_obj > 2
print(ser_bool)
print(ser_obj[ser_bool]) print(ser_obj[ser_obj > 2])
运行结果:
a False
b False
c False
d True
e True
dtype: bool
d 3
e 4
dtype: int64
d 3
e 4
dtype: int64
DataFrame索引
1. columns 指定列索引名
示例代码:
import numpy as np df_obj = pd.DataFrame(np.random.randn(5,4), columns = ['a', 'b', 'c', 'd'])
print(df_obj.head())
运行结果:
a b c d
0 -0.241678 0.621589 0.843546 -0.383105
1 -0.526918 -0.485325 1.124420 -0.653144
2 -1.074163 0.939324 -0.309822 -0.209149
3 -0.716816 1.844654 -2.123637 -1.323484
4 0.368212 -0.910324 0.064703 0.486016

2. 列索引
df_obj[[‘label’]]
示例代码:
# 列索引
print(df_obj['a']) # 返回Series类型
print(df_obj[[0]]) # 返回DataFrame类型
print(type(df_obj[[0]])) # 返回DataFrame类型
运行结果:
0 -0.241678
1 -0.526918
2 -1.074163
3 -0.716816
4 0.368212
Name: a, dtype: float64
<class 'pandas.core.frame.DataFrame'>
3. 不连续索引
df_obj[[‘label1’, ‘label2’]]
示例代码:
# 不连续索引
print(df_obj[['a','c']])
print(df_obj[[1, 3]])
运行结果:
a c
0 -0.241678 0.843546
1 -0.526918 1.124420
2 -1.074163 -0.309822
3 -0.716816 -2.123637
4 0.368212 0.064703
b d
0 0.621589 -0.383105
1 -0.485325 -0.653144
2 0.939324 -0.209149
3 1.844654 -1.323484
4 -0.910324 0.486016
高级索引:标签、位置和混合
Pandas的高级索引有3种
1. loc 标签索引
DataFrame 不能直接切片,可以通过loc来做切片
loc是基于标签名的索引,也就是我们自定义的索引名
示例代码:
# 标签索引 loc
# Series
print(ser_obj['b':'d'])
print(ser_obj.loc['b':'d']) # DataFrame
print(df_obj['a']) # 第一个参数索引行,第二个参数是列
print(df_obj.loc[0:2, 'a'])
运行结果:
b 1
c 2
d 3
dtype: int64
b 1
c 2
d 3
dtype: int64 0 -0.241678
1 -0.526918
2 -1.074163
3 -0.716816
4 0.368212
Name: a, dtype: float64
0 -0.241678
1 -0.526918
2 -1.074163
Name: a, dtype: float64
2. iloc 位置索引
作用和loc一样,不过是基于索引编号来索引
示例代码:
# 整型位置索引 iloc
# Series
print(ser_obj[1:3])
print(ser_obj.iloc[1:3]) # DataFrame
print(df_obj.iloc[0:2, 0]) # 注意和df_obj.loc[0:2, 'a']的区别
运行结果:
b 1
c 2
dtype: int64
b 1
c 2
dtype: int64 0 -0.241678
1 -0.526918
Name: a, dtype: float64
3. ix 标签与位置混合索引
ix是以上二者的综合,既可以使用索引编号,又可以使用自定义索引,要视情况不同来使用,
如果索引既有数字又有英文,那么这种方式是不建议使用的,容易导致定位的混乱。
示例代码:
# 混合索引 ix
# Series
print(ser_obj.ix[1:3])
print(ser_obj.ix['b':'c']) # DataFrame
print(df_obj.loc[0:2, 'a'])
print(df_obj.ix[0:2, 0])
运行结果:
b 1
c 2
dtype: int64
b 1
c 2
dtype: int64 0 -0.241678
1 -0.526918
2 -1.074163
Name: a, dtype: float64
注意
DataFrame索引操作,可将其看作ndarray的索引操作
标签的切片索引是包含末尾位置的
pandas索引操作的更多相关文章
- 【python】pandas 索引操作
选择.修改数据(单层索引) 推荐使用.at..iat..loc..iloc 操作 句法 结果 备注 选择列 df[col] Series 基于列名(列的标签),返回Series 用标签选择行 df.l ...
- 数据分析06 /pandas高级操作相关案例:人口案例分析、2012美国大选献金项目数据分析
数据分析06 /pandas高级操作相关案例:人口案例分析.2012美国大选献金项目数据分析 目录 数据分析06 /pandas高级操作相关案例:人口案例分析.2012美国大选献金项目数据分析 1. ...
- pandas神器操作excel表格大全(数据分析数据预处理)
使用pandas库操作excel,csv表格操作大全 关注公众号"轻松学编程"了解更多,文末有公众号二维码,可以扫码关注哦. 前言 准备三份csv表格做演示: 成绩表.csv su ...
- pandas高级操作
pandas高级操作 import numpy as np import pandas as pd from pandas import DataFrame,Series 替换操作 替换操作可以同步作 ...
- 【Python自动化Excel】Python与pandas字符串操作
Python之所以能够成为流行的数据分析语言,有一部分原因在于其简洁易用的字符串处理能力. Python的字符串对象封装了很多开箱即用的内置方法,处理单个字符串时十分方便:对于Excel.csv等表格 ...
- Mongodb学习笔记三(Mongodb索引操作及性能测试)
第三章 索引操作及性能测试 索引在大数据下的重要性就不多说了 下面测试中用到了mongodb的一个客户端工具Robomongo,大家可以在网上选择下载.官网下载地址:http://www.robomo ...
- Elasticsearch-PHP 索引操作(转)
索引操作 本节通过客户端来介绍一下索引API的各种操作.索引操作包含任何管理索引本身(例如,创建索引,删除索引,更改映射等等). 我们通过一些常见的操作的代码片段来介绍,然后在表格中列出剩下的方法.R ...
- ElasticSearch+Kibana 索引操作
ElasticSearch+Kibana 索引操作 一 前言 ElasticiSearch 简介 ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引 ...
- Mysql之表的操作与索引操作
表的操作: 1.表的创建: create table if not exists table_name(字段定义); 例子: create table if not exists user(id in ...
随机推荐
- 【lightoj-1055】Going Together(BFS)
链接:http://www.lightoj.com/volume_showproblem.php?problem=1055 类似推箱子的游戏,一条命令可以让abc三个小人同时移动,但是出界或者撞墙是不 ...
- python练习题100例
链接地址:http://www.runoob.com/python/python-100-examples.html
- LeetCode OJ :Unique Binary Search Trees II(唯一二叉搜索树)
题目如下所示:返回的结果是一个Node的Vector: Given n, generate all structurally unique BST's (binary search trees) th ...
- LeetCode OJ:First Missing Positive (第一个丢失的正数)
在leetCode上做的第一个难度是hard的题,题目如下: Given an unsorted integer array, find the first missing positive inte ...
- 条款19:定义class就相当于定义一个个的内置类型
下面的条框应该是谨记的: 1. 新的type应该如何创建与销毁 2. 对象的初始化与赋值应该有什么样的区别 3. 新type的对象如果被pass-by-value,有什么影响? 4. 什么事新type ...
- 剑指offer--25.二叉树的镜像
时间限制:1秒 空间限制:32768K 热度指数:238655 题目描述 操作给定的二叉树,将其变换为源二叉树的镜像. 输入描述: 二叉树的镜像定义:源二叉树 8 / \ 6 10 / \ / \ 5 ...
- 【解题报告】[动态规划]-PID69 / 过河卒
原题地址:http://www.rqnoj.cn/problem/69 解题思路: 用DP[i][j]表示到达(i,j)点的路径数,则 DP[0][0]=1 DP[i][j]=DP[i-1][j]+D ...
- 21天学通C++_Day3_Part2
0.语句的分行 法1:在第一行末尾添加反斜杠 cout<<"Hello \ World!"<<endl; 法2:将字符串字面量分成两个,编译器注意到两个响铃 ...
- bzoj 4998 星球联盟
新技能 get √ :LCT 维护边双连通分量 这题题意就是动态加边,每次求边的两端是否在一个边双连通分量里,输出 "No" 或者边双连通分量的大小 可以用两个并查集分别记录连通性 ...
- CentOS7 配置光盘iso镜像为本地yum源
因为系统使用的最小化安装,所以很多软件没有安装上,又无法上网,为了方便,所以直接将上传的iso镜像直接作为yum源. 我已经将光盘的iso镜像上传至服务器. 接下来就是将iso的光盘镜像进行挂载了 m ...