尝试一些用KNN来做数字识别,测试数据来自:
MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges
http://yann.lecun.com/exdb/mnist/

1、数据
将位图转为向量(数组),k尝试取值3-15,距离计算采用欧式距离。
d(x,y)=\sqrt{\sum_{i=1}^{n}(x_i-y_i)^2}

2、测试
调整k的取值和基础样本数量,测试得出k取值对识别正确率的影响,以及分类识别的耗时。

如何用python解析mnist图片 - 海上扬凡的博客 - 博客频道 - CSDN.NET
http://blog.csdn.net/u014046170/article/details/47445919

# -*- coding: utf-8 -*-
"""
Created on Wed Mar 08 14:38:15 2017

@author: zapline<278998871@qq.com>
"""

import struct
import os
import numpy

def read_file_data(filename):
    f = open(filename, 'rb')
    buf = f.read()
    f.close()
    return buf

def loadImageDataSet(filename):
    index = 0
    buf = read_file_data(filename)
    magic, images, rows, columns = struct.unpack_from('>IIII' , buf , index)
    index += struct.calcsize('>IIII')
    data = numpy.zeros((images, rows * columns))
    for i in xrange(images):
        imgVector = numpy.zeros((1, rows * columns)) 
        for x in xrange(rows):
            for y in xrange(columns):
                imgVector[0, x * columns + y] = int(struct.unpack_from('>B', buf, index)[0])
                index += struct.calcsize('>B')
        data[i, :] = imgVector
    return data

def loadLableDataSet(filename):
    index = 0
    buf = read_file_data(filename)
    magic, images = struct.unpack_from('>II' , buf , index)
    index += struct.calcsize('>II')
    data = []
    for i in xrange(images):
        lable = int(struct.unpack_from('>B', buf, index)[0])
        index += struct.calcsize('>B')
        data.append(lable)
    return data

def loadDataSet():
    path = "D:\\kingsoft\\ml\\dataset\\"
    trainingImageFile = path + "train-images.idx3-ubyte"
    trainingLableFile = path + "train-labels.idx1-ubyte"
    testingImageFile = path + "t10k-images.idx3-ubyte"
    testingLableFile = path + "t10k-labels.idx1-ubyte"
    train_x = loadImageDataSet(trainingImageFile)
    train_y = loadLableDataSet(trainingLableFile)
    test_x = loadImageDataSet(testingImageFile)
    test_y = loadLableDataSet(testingLableFile)
    return train_x, train_y, test_x, test_y

# -*- coding: utf-8 -*-
"""
Created on Wed Mar 08 14:35:55 2017

@author: zapline<278998871@qq.com>
"""

import numpy

def kNNClassify(newInput, dataSet, labels, k):
    numSamples = dataSet.shape[0]
    diff = numpy.tile(newInput, (numSamples, 1)) - dataSet
    squaredDiff = diff ** 2
    squaredDist = numpy.sum(squaredDiff, axis = 1)
    distance = squaredDist ** 0.5
    sortedDistIndices = numpy.argsort(distance)

classCount = {}
    for i in xrange(k):
        voteLabel = labels[sortedDistIndices[i]]
        classCount[voteLabel] = classCount.get(voteLabel, 0) + 1

maxCount = 0
    for key, value in classCount.items():
        if value > maxCount:
            maxCount = value
            maxIndex = key
    return maxIndex

# -*- coding: utf-8 -*-
"""
Created on Wed Mar 08 14:39:21 2017

@author: zapline<278998871@qq.com>
"""

import dataset
import knn

def testHandWritingClass():
    print "step 1: load data..."
    train_x, train_y, test_x, test_y = dataset.loadDataSet()

print "step 2: training..."
    pass

print "step 3: testing..."
    numTestSamples = test_x.shape[0]
    matchCount = 0
    for i in xrange(numTestSamples):
        predict = knn.kNNClassify(test_x[i], train_x, train_y, 3)
        if predict == test_y[i]:
            matchCount += 1
    accuracy = float(matchCount) / numTestSamples

print "step 4: show the result..."
    print 'The classify accuracy is: %.2f%%' % (accuracy * 100)
 
testHandWritingClass()
print "game over"

总结:上述代码跑起来比较慢,但是在train数据够多的情况下,准确率不错

后端程序员之路 13、使用KNN进行数字识别的更多相关文章

  1. 后端程序员之路 12、K最近邻(k-Nearest Neighbour,KNN)分类算法

    K最近邻(k-Nearest Neighbour,KNN)分类算法,是最简单的机器学习算法之一.由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重 ...

  2. 后端程序员之路 59、go uiprogress

    gosuri/uiprogress: A go library to render progress bars in terminal applicationshttps://github.com/g ...

  3. 后端程序员之路 52、A Tour of Go-2

    # flowcontrol    - for        - for i := 0; i < 10; i++ {        - for ; sum < 1000; {        ...

  4. 后端程序员之路 43、Redis list

    Redis数据类型之LIST类型 - Web程序猿 - 博客频道 - CSDN.NEThttp://blog.csdn.net/thinkercode/article/details/46565051 ...

  5. 后端程序员之路 22、RESTful API

    理解RESTful架构 - 阮一峰的网络日志http://www.ruanyifeng.com/blog/2011/09/restful.html RESTful API 设计指南 - 阮一峰的网络日 ...

  6. 后端程序员之路 16、信息熵 、决策树、ID3

    信息论的熵 - guisu,程序人生. 逆水行舟,不进则退. - 博客频道 - CSDN.NEThttp://blog.csdn.net/hguisu/article/details/27305435 ...

  7. 后端程序员之路 7、Zookeeper

    Zookeeper是hadoop的一个子项目,提供分布式应用程序协调服务. Apache ZooKeeper - Homehttps://zookeeper.apache.org/ zookeeper ...

  8. 后端程序员之路 4、一种monitor的做法

    record_t包含_sum._count._time_stamp._max._min最基础的一条记录,可以用来记录最大值.最小值.计数.总和metric_t含有RECORD_NUM(6)份recor ...

  9. 后端程序员之路 58、go wlog

    daviddengcn/go-colortext: Change the color of console text.https://github.com/daviddengcn/go-colorte ...

随机推荐

  1. Hadoop----hdfs dfs常用命令的使用

    用法    -mkdir    创建目录    Usage:hdfs dfs -mkdir [-p] < paths>    选项:-p    很像Unix mkdir -p,沿路径创建父 ...

  2. PTA刷题记录

    考虑到PAT甲级考试和开学后的XCPC比赛,决定寒假把PAT (Advanced Level) Practice刷完,进度条会在这篇博客下更新.由于主要以记录为主,大体上不会像单篇题解那么详细,但是对 ...

  3. AtCoder Beginner Contest 176

    比赛链接:https://atcoder.jp/contests/abc176 A - Takoyaki #include <bits/stdc++.h> using namespace ...

  4. 【uva 11491】Erasing and Winning(算法效率--贪心+单调队列)

    题意:有一个N位整数,要求输出删除其中D个数字之后的最大整数. 解法:贪心.(P.S.要小心,我WA了2次...)由于规定了整数的位数,那么我们要尽量让高位的数字大一些,也就是要尽量删去前面小的数字. ...

  5. 【noi 2.6_8787】数的划分(DP){附【转】整数划分的解题方法}

    题意:问把整数N分成K份的分法数.(与"放苹果"不同,在这题不可以有一份为空,但可以类比)解法:f[i][j]表示把i分成j份的方案数.f[i][j]=f[i-1][j-1](新开 ...

  6. Bing壁纸-20200416

  7. OpenStack-知识点补充

    登录计算节点查看进程 [root@compute ~]# ps aux | grep kvm root 824 0.0 0.0 0 0 ? S< 10:19 0:00 [kvm-irqfd-cl ...

  8. Linux 应用开发----socket编程笔记

    Linux socket编程 套接字定义描述 套接字的域 AF_INET ====>IPv4 AF_INET6 ====>IPv6 AF_UNIX ====>unix 域 AF_UP ...

  9. Adobe DreamWeaver CC 快捷键

    1 1 ADOBE DREAMWEAVER CC Shortcuts: DREAMWEAVER CC DOCUMENT EDITING SHORTCUTS Select Dreamweaver > ...

  10. How to unblock GitHub DMCA takedown repo

    How to unblock GitHub DMCA takedown repo 如何解封 GitHub DMCA takedown 的仓库 support@github.com 发件人: GitHu ...