后端程序员之路 13、使用KNN进行数字识别
尝试一些用KNN来做数字识别,测试数据来自:
MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges
http://yann.lecun.com/exdb/mnist/
1、数据
将位图转为向量(数组),k尝试取值3-15,距离计算采用欧式距离。
d(x,y)=\sqrt{\sum_{i=1}^{n}(x_i-y_i)^2}
2、测试
调整k的取值和基础样本数量,测试得出k取值对识别正确率的影响,以及分类识别的耗时。
如何用python解析mnist图片 - 海上扬凡的博客 - 博客频道 - CSDN.NET
http://blog.csdn.net/u014046170/article/details/47445919
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 08 14:38:15 2017
@author: zapline<278998871@qq.com>
"""
import struct
import os
import numpy
def read_file_data(filename):
f = open(filename, 'rb')
buf = f.read()
f.close()
return buf
def loadImageDataSet(filename):
index = 0
buf = read_file_data(filename)
magic, images, rows, columns = struct.unpack_from('>IIII' , buf , index)
index += struct.calcsize('>IIII')
data = numpy.zeros((images, rows * columns))
for i in xrange(images):
imgVector = numpy.zeros((1, rows * columns))
for x in xrange(rows):
for y in xrange(columns):
imgVector[0, x * columns + y] = int(struct.unpack_from('>B', buf, index)[0])
index += struct.calcsize('>B')
data[i, :] = imgVector
return data
def loadLableDataSet(filename):
index = 0
buf = read_file_data(filename)
magic, images = struct.unpack_from('>II' , buf , index)
index += struct.calcsize('>II')
data = []
for i in xrange(images):
lable = int(struct.unpack_from('>B', buf, index)[0])
index += struct.calcsize('>B')
data.append(lable)
return data
def loadDataSet():
path = "D:\\kingsoft\\ml\\dataset\\"
trainingImageFile = path + "train-images.idx3-ubyte"
trainingLableFile = path + "train-labels.idx1-ubyte"
testingImageFile = path + "t10k-images.idx3-ubyte"
testingLableFile = path + "t10k-labels.idx1-ubyte"
train_x = loadImageDataSet(trainingImageFile)
train_y = loadLableDataSet(trainingLableFile)
test_x = loadImageDataSet(testingImageFile)
test_y = loadLableDataSet(testingLableFile)
return train_x, train_y, test_x, test_y
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 08 14:35:55 2017
@author: zapline<278998871@qq.com>
"""
import numpy
def kNNClassify(newInput, dataSet, labels, k):
numSamples = dataSet.shape[0]
diff = numpy.tile(newInput, (numSamples, 1)) - dataSet
squaredDiff = diff ** 2
squaredDist = numpy.sum(squaredDiff, axis = 1)
distance = squaredDist ** 0.5
sortedDistIndices = numpy.argsort(distance)
classCount = {}
for i in xrange(k):
voteLabel = labels[sortedDistIndices[i]]
classCount[voteLabel] = classCount.get(voteLabel, 0) + 1
maxCount = 0
for key, value in classCount.items():
if value > maxCount:
maxCount = value
maxIndex = key
return maxIndex
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 08 14:39:21 2017
@author: zapline<278998871@qq.com>
"""
import dataset
import knn
def testHandWritingClass():
print "step 1: load data..."
train_x, train_y, test_x, test_y = dataset.loadDataSet()
print "step 2: training..."
pass
print "step 3: testing..."
numTestSamples = test_x.shape[0]
matchCount = 0
for i in xrange(numTestSamples):
predict = knn.kNNClassify(test_x[i], train_x, train_y, 3)
if predict == test_y[i]:
matchCount += 1
accuracy = float(matchCount) / numTestSamples
print "step 4: show the result..."
print 'The classify accuracy is: %.2f%%' % (accuracy * 100)
testHandWritingClass()
print "game over"
总结:上述代码跑起来比较慢,但是在train数据够多的情况下,准确率不错
后端程序员之路 13、使用KNN进行数字识别的更多相关文章
- 后端程序员之路 12、K最近邻(k-Nearest Neighbour,KNN)分类算法
K最近邻(k-Nearest Neighbour,KNN)分类算法,是最简单的机器学习算法之一.由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重 ...
- 后端程序员之路 59、go uiprogress
gosuri/uiprogress: A go library to render progress bars in terminal applicationshttps://github.com/g ...
- 后端程序员之路 52、A Tour of Go-2
# flowcontrol - for - for i := 0; i < 10; i++ { - for ; sum < 1000; { ...
- 后端程序员之路 43、Redis list
Redis数据类型之LIST类型 - Web程序猿 - 博客频道 - CSDN.NEThttp://blog.csdn.net/thinkercode/article/details/46565051 ...
- 后端程序员之路 22、RESTful API
理解RESTful架构 - 阮一峰的网络日志http://www.ruanyifeng.com/blog/2011/09/restful.html RESTful API 设计指南 - 阮一峰的网络日 ...
- 后端程序员之路 16、信息熵 、决策树、ID3
信息论的熵 - guisu,程序人生. 逆水行舟,不进则退. - 博客频道 - CSDN.NEThttp://blog.csdn.net/hguisu/article/details/27305435 ...
- 后端程序员之路 7、Zookeeper
Zookeeper是hadoop的一个子项目,提供分布式应用程序协调服务. Apache ZooKeeper - Homehttps://zookeeper.apache.org/ zookeeper ...
- 后端程序员之路 4、一种monitor的做法
record_t包含_sum._count._time_stamp._max._min最基础的一条记录,可以用来记录最大值.最小值.计数.总和metric_t含有RECORD_NUM(6)份recor ...
- 后端程序员之路 58、go wlog
daviddengcn/go-colortext: Change the color of console text.https://github.com/daviddengcn/go-colorte ...
随机推荐
- 2019牛客暑期多校训练营(第七场)E-Find the median(思维+树状数组+离散化+二分)
>传送门< 题意:给n个操作,每次和 (1e9范围内)即往数组里面插所有 的所有数,求每次操作后的中位数思路:区间离散化然后二分答案,因为小于中位数的数字恰好有个,这显然具有单调性.那么问 ...
- Codeforces Global Round 9 B. Neighbor Grid
题目链接:https://codeforces.com/contest/1375/problem/B 题意 给出一个 $n \times m$ 的方阵,每个方格中有一个非负整数,一个好方格定义如下: ...
- AtCoder Beginner Contest 169
比赛链接:https://atcoder.jp/contests/abc169/tasks A - Multiplication 1 #include <bits/stdc++.h> us ...
- hdu-6699 Block Breaker
题意: 就是给你一个n行m列的矩形,后面将会有q次操作,每次操作会输入x,y表示要击碎第x行第y列的石块,当击碎它之后还去判断一下周围石块是否牢固 如果一个石块的左右两边至少一个已经被击碎且上下也至少 ...
- Long Long Message POJ - 2774 后缀数组
The little cat is majoring in physics in the capital of Byterland. A piece of sad news comes to him ...
- CF1462-F. The Treasure of The Segments
题意: 给出n个线段组成的集合,第i个线段用 \(\{l_i, r_i\}\) 表示线段从坐标轴的点\(l_i\)横跨到点\(r_i\).现在你可以删除其中的一些线段,使得剩下的线段组成的集合中至少存 ...
- ArcGIS处理栅格数据(三)
六.制作镶嵌数据集(栅格数据集优点:a.浏览速度快:b.入库速度快:c.可指定区域显示) 1.右键目录中的数据库,新建"镶嵌数据集". 2.添加栅格数据. 3.定义金字塔. 4.构 ...
- SPOJ REPEATS Repeats (后缀数组 + RMQ:子串的最大循环节)题解
题意: 给定一个串\(s\),\(s\)必有一个最大循环节的连续子串\(ss\),问最大循环次数是多少 思路: 我们可以知道,如果一个长度为\(L\)的子串连续出现了两次及以上,那么必然会存在\(s[ ...
- 设置chromium的默认搜索引擎为Bing
设置 -> 搜索 -> 管理搜索引擎 第三项中添加: http://cn.bing.com/search?q=%s 即可.
- React Gatsby 最新教程
React Gatsby 最新教程 https://www.gatsbyjs.com/docs/quick-start/ https://www.gatsbyjs.com/docs/tutorial/ ...