https://en.wikipedia.org/wiki/Subroutine

In computer programming, a subroutine is a sequence of program instructions that perform a specific task, packaged as a unit. This unit can then be used in programs wherever that particular task should be performed.

Subprograms may be defined within programs, or separately in libraries that can be used by multiple programs. In different programming languages, a subroutine may be called a procedure, a function, a routine, a method, or a subprogram. The generic term callable unit is sometimes used.[1]

Subroutines are special cases of ... coroutines.

https://en.wikipedia.org/wiki/Coroutine

Coroutines are computer-program components that generalize subroutines for non-preemptive multitasking, by allowing multiple entry points for suspending and resuming execution at certain locations. Coroutines are well-suited for implementing familiar program components such as cooperative tasksexceptionsevent loopsiteratorsinfinite lists and pipes.

According to Donald KnuthMelvin Conway coined the term coroutine in 1958 when he applied it to construction of an assembly program.[1] The first published explanation of the coroutine appeared later, in 1963.[2]

Comparison with subroutines[edit]

Subroutines are special cases of coroutines.[3] When subroutines are invoked, execution begins at the start, and once a subroutine exits, it is finished; an instance of a subroutine only returns once, and does not hold state between invocations. By contrast, coroutines can exit by calling other coroutines, which may later return to the point where they were invoked in the original coroutine; from the coroutine's point of view, it is not exiting but calling another coroutine.[3] Thus, a coroutine instance holds state, and varies between invocations; there can be multiple instances of a given coroutine at once. The difference between calling another coroutine by means of "yielding" to it and simply calling another routine (which then, also, would return to the original point), is that the relationship between two coroutines which yield to each other is not that of caller-callee, but instead symmetric.

Any subroutine can be translated to a coroutine which does not call yield.[4]

Here is a simple example of how coroutines can be useful. Suppose you have a consumer-producer relationship where one routine creates items and adds them to a queue and another removes items from the queue and uses them. For reasons of efficiency, you want to add and remove several items at once. The code might look like this:

var q := new queue

coroutine produce
loop
while q is not full
create some new items
add the items to q
yield to consume coroutine consume
loop
while q is not empty
remove some items from q
use the items
yield to produce

The queue is then completely filled or emptied before yielding control to the other coroutine using the yield command. The further coroutines calls are starting right after the yield, in the outer coroutine loop.

Although this example is often used as an introduction to multithreading, two threads are not needed for this: the yield statement can be implemented by a jump directly from one routine into the other.

Comparison with threads[edit]

Coroutines are very similar to threads. However, coroutines are cooperatively multitasked, whereas threads are typically preemptively multitasked. This means that coroutines provide concurrency but not parallelism. The advantages of coroutines over threads are that they may be used in a hard-realtime context (switching between coroutines need not involve any system calls or any blocking calls whatsoever), there is no need for synchronisation primitives such as mutexes, semaphores, etc. in order to guard critical sections, and there is no need for support from the operating system.

It is possible to implement coroutines using preemptively-scheduled threads, in a way that will be transparent to the calling code, but some of the advantages (particularly the suitability for hard-realtime operation and relative cheapness of switching between them) will be lost.

Comparison with generators[edit]

Generators, also known as semicoroutines,[5] are a subset of coroutines. Specifically, while both can yield multiple times, suspending their execution and allowing re-entry at multiple entry points, they differ in coroutines' ability to control where execution continues immediately after they yield, while generators cannot, instead transferring control back to the generator's caller.[6] That is, since generators are primarily used to simplify the writing of iterators, the yield statement in a generator does not specify a coroutine to jump to, but rather passes a value back to a parent routine.

However, it is still possible to implement coroutines on top of a generator facility, with the aid of a top-level dispatcher routine (a trampoline, essentially) that passes control explicitly to child generators identified by tokens passed back from the generators:

var q := new queue
generator produce
loop
while q is not full
create some new items
add the items to q
yield consume
generator consume
loop
while q is not empty
remove some items from q
use the items
yield produce
subroutine dispatcher
var d := new dictionary(generatoriterator)
d[produce] := start produce
d[consume] := start consume
var current := produce
loop
current := next d[current]

A number of implementations of coroutines for languages with generator support but no native coroutines (e.g. Python[7] before 2.5) use this or a similar model.

Comparison with mutual recursion[edit]

Further information: Mutual recursion

Using coroutines for state machines or concurrency is similar to using mutual recursion with tail calls, as in both cases the control changes to a different one of a set of routines. However, coroutines are more flexible and generally more efficient. Since coroutines yield rather than return, and then resume execution rather than restarting from the beginning, they are able to hold state, both variables (as in a closure) and execution point, and yields are not limited to being in tail position; mutually recursive subroutines must either use shared variables or pass state as parameters. Further, each mutually recursive call of a subroutine requires a new stack frame (unless tail call elimination is implemented), while passing control between coroutines uses the existing contexts and can be implemented simply by a jump.

Common uses

Coroutines are useful to implement the following:

  • State machines within a single subroutine, where the state is determined by the current entry/exit point of the procedure; this can result in more readable code compared to use of goto, and may also be implemented via mutual recursion with tail calls.
  • Actor model of concurrency, for instance in video games. Each actor has its own procedures (this again logically separates the code), but they voluntarily give up control to central scheduler, which executes them sequentially (this is a form of cooperative multitasking).
  • Generators, and these are useful for streams – particularly input/output – and for generic traversal of data structures.
  • Communicating sequential processes where each sub-process is a coroutine. Channel inputs/outputs and blocking operations yield coroutines and a scheduler unblocks them on completion events. Alternatively, each sub-process may be the parent of the one following it in the data pipeline (or preceding it, in which case the pattern can be expressed as nested generators).
  • Reverse communication, commonly used in mathematical software, wherein a procedure such as a solver, integral evaluator, ... needs the using process to make a computation, such as evaluating an equation or integrand.

Routine Subroutine Coroutine 子程序 协程 子例程的更多相关文章

  1. Routine Subroutine Coroutine 子程序 协程

    https://en.wikipedia.org/wiki/Subroutine In computer programming, a subroutine is a sequence of prog ...

  2. Boost.Coroutine2:学习使用Coroutine(协程)

    function(函数)routine(例程)coroutine (协程) 函数,例程以及协程都是指一系列的操作的集合. 函数(有返回值)以及例程(没有返回值)也被称作subroutine(子例程), ...

  3. C#中的yield return与Unity中的Coroutine(协程)(下)

    Unity中的Coroutine(协程) 估计熟悉Unity的人看过或者用过StartCoroutine() 假设我们在场景中有一个UGUI组件, Image: 将以下代码绑定到Image using ...

  4. Lua基础之coroutine(协程)

    概括:1.创建协程2.coroutine的函数3.coroutine的基本流程4.yield对coroutine流程的干预5.resume, function()以及yield之间的参数传递和返回值传 ...

  5. Coroutine 终止协程和异常处理

    终止协程和异常处理 协程中未处理的异常会向上冒泡,传给 next 函数或 send 方法的调用方(即触发协程的对象) 终止协程的一种方式:发送某个哨符值,让协程退出.内置的 None 和 Ellips ...

  6. C#中的yield return与Unity中的Coroutine(协程)(上)

    C#中的yield return C#语法中有个特别的关键字yield, 它是干什么用的呢? 来看看专业的解释: yield 是在迭代器块中用于向枚举数对象提供值或发出迭代结束信号.它的形式为下列之一 ...

  7. Unity协程(Coroutine)原理深入剖析再续

    Unity协程(Coroutine)原理深入剖析再续 By D.S.Qiu 尊重他人的劳动,支持原创,转载请注明出处:http.dsqiu.iteye.com 前面已经介绍过对协程(Coroutine ...

  8. Unity协程Coroutine使用总结和一些坑

    原文摘自 Unity协程Coroutine使用总结和一些坑 MonoBehavior关于协程提供了下面几个接口: 可以使用函数或者函数名字符串来启动一个协程,同时可以用函数,函数名字符串,和Corou ...

  9. coroutine协程

    如果你接触过lua这种小巧的脚本语言,你就会经常接触到一个叫做协程的神奇概念.大多数脚本语言都有对协程不同程度的支持.但是大多编译语言,如C/C++,根本就不知道这样的东西存在.当然也很多人研究如何在 ...

随机推荐

  1. SecureCRT SSH Linux中不显示彩色 字体颜色、文件夹和文件显示的颜色区别开解决办法

    SecureCRT SSH Linux中不显示彩色 字体颜色.文件夹和文件显示的颜色区别开解决办法 实验环境: 刚开始我的情况是这样的:带颜色的显示不出来,然后还能看到,此处有内容,猜测是Secure ...

  2. idea提交svn不显示新建文件

    在idea中,使用svn提交时可能会出现 预期文件没出现在提交目录里. 是因为没有把新建文件添加到版本控制里. 解决办法:右键选择文件→subversion→add to  vcs. 自动把新文件添加 ...

  3. 微信网页授权多次回调code请求

    最近在做微信网页授权的时候遇到一个问题如果直接从后台把微信授权的url参数什么的拼装好,然后直接redirect 这个url 会导致时不时的多次请求回调的url .网上说是因为网络原因,如果10s没有 ...

  4. Servlet+JSP+JDBC综合案例

    层级关系: 一.Util包 包里面写一个JDBCTools.java文件 功能:实现数据库连接返回一个Connection对象,并且可以实现数据库相应资源的关闭! 注意事项: 1.定义成员变量 1 p ...

  5. CentOS 6或7 启动故障修复及root密码破解

    CentOS 6或7 启动故障修复及root密码破解 目录 CentOS 6或7 启动故障修复及root密码破解 CentOS 6启动流程修复: 实验一:删除initramfs-2.6.32-754. ...

  6. 【linux】系统编程-5-线程

    目录 前言 7. 线程 7.1 概念 7.2 创建线程 7.2.1 pthread_create() 7.3 设置线程属性 7.3.1 pthread_attr_init() 7.3.2 销毁一个线程 ...

  7. Logstash学习之路(二)Elasticsearch导入json数据文件

    一.数据从文件导入elasticsearch 1.数据准备: 1.数据文件:test.json 2.索引名称:index 3.数据类型:doc 4.批量操作API:bulk {"index& ...

  8. 容器编排系统K8s之节点污点和pod容忍度

    前文我们了解了k8s上的kube-scheduler的工作方式,以及pod调度策略的定义:回顾请参考:https://www.cnblogs.com/qiuhom-1874/p/14243312.ht ...

  9. linux kernel操作GPIO函数

    一.头文件 #include <asm/gpio.h> 二.注册 GPIO int gpio_request(unsigned gpio, const char *label) 功能:申请 ...

  10. P4292 [WC2010]重建计划 点分治+单调队列

    题目描述 题目传送门 分析 看到比值的形式就想到 \(01分数规划\),二分答案 设当前的值为 \(mids\) 如果存在\(\frac{\sum _{e \in S} v(e)}{|S|} \geq ...