POJ2942 Knights of the Round Table[点双连通分量|二分图染色|补图]
| Time Limit: 7000MS | Memory Limit: 65536K | |
| Total Submissions: 12439 | Accepted: 4126 |
Description
Knights can easily get over-excited during discussions-especially after a couple of drinks. After some unfortunate accidents, King Arthur asked the famous wizard Merlin to make sure that in the future no fights break out between the knights. After studying the problem carefully, Merlin realized that the fights can only be prevented if the knights are seated according to the following two rules:
- The knights should be seated such that two knights who hate each other should not be neighbors at the table. (Merlin has a list that says who hates whom.) The knights are sitting around a roundtable, thus every knight has exactly two neighbors.
- An odd number of knights should sit around the table. This ensures that if the knights cannot agree on something, then they can settle the issue by voting. (If the number of knights is even, then itcan happen that ``yes" and ``no" have the same number of votes, and the argument goes on.)
Merlin will let the knights sit down only if these two rules are satisfied, otherwise he cancels the meeting. (If only one knight shows up, then the meeting is canceled as well, as one person cannot sit around a table.) Merlin realized that this means that there can be knights who cannot be part of any seating arrangements that respect these rules, and these knights will never be able to sit at the Round Table (one such case is if a knight hates every other knight, but there are many other possible reasons). If a knight cannot sit at the Round Table, then he cannot be a member of the Knights of the Round Table and must be expelled from the order. These knights have to be transferred to a less-prestigious order, such as the Knights of the Square Table, the Knights of the Octagonal Table, or the Knights of the Banana-Shaped Table. To help Merlin, you have to write a program that will determine the number of knights that must be expelled.
Input
The input is terminated by a block with n = m = 0 .
Output
Sample Input
5 5
1 4
1 5
2 5
3 4
4 5
0 0
Sample Output
2
Hint
Source
求点双连通分量,然后每个分量二分图染色,如果不是二分图,则一定可以构造出奇环经过每个点
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#define C(x) memset(x,0,sizeof(x))
using namespace std;
const int N=,M=1e6+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n=,m,u,v,g[N][N];
struct edge{
int v,ne;
}e[M<<];
int h[N],cnt=;
inline void ins(int u,int v){
cnt++;
e[cnt].v=v;e[cnt].ne=h[u];h[u]=cnt;
cnt++;
e[cnt].v=u;e[cnt].ne=h[v];h[v]=cnt;
}
void buildGraph(){
memset(h,,sizeof(h)); cnt=;
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++) if(!g[i][j]) ins(i,j);
}
struct data{
int u,v;
data(int a=,int b=):u(a),v(b){}
}st[M<<];
int top=;
int dfn[N],low[N],iscut[N],belong[N],dfc=,bcc=;
int col[N],ok[N];
bool color(int u,int id){//printf("%d %d %d\n",u,col[u],id);
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;
if(belong[v]!=id) continue;
if(col[v]==col[u]) return ;//first do this
if(!col[v]){
col[v]=-col[u];
if(!color(v,id)) return ;
}
}
return ;
}
void dfs(int u,int fa){
dfn[u]=low[u]=++dfc;
int child=;
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;
if(!dfn[v]){
st[++top]=data(u,v);
child++;
dfs(v,u);
low[u]=min(low[u],low[v]);
if(low[v]>=dfn[u]){
iscut[u]=;
bcc++;
while(true){
int tu=st[top].u,tv=st[top--].v;
if(belong[tu]!=bcc) belong[tu]=bcc;
if(belong[tv]!=bcc) belong[tv]=bcc;
if(tu==u&&tv==v) break;
}
col[u]=;
if(!color(u,bcc))
for(int i=;i<=n;i++) if(belong[i]==bcc) ok[i]=;
col[u]=;//for cut vertex
}
}else if(dfn[v]<dfn[u]&&v!=fa){
st[++top]=data(u,v);//notice!!!
low[u]=min(low[u],dfn[v]);
}
}
if(child==&&fa==) iscut[u]=;
}
void BCC(){
dfc=bcc=;top=;
C(dfn);C(low);C(iscut);C(belong);
C(col);C(ok);
for(int i=;i<=n;i++) if(!dfn[i]) dfs(i,);
}
int main(){
while(scanf("%d%d",&n,&m)!=EOF&&(n||m)){
memset(g,,sizeof(g));
for(int i=;i<=m;i++){u=read();v=read();g[u][v]=g[v][u]=;}
buildGraph();
BCC();
int ans=;
for(int i=;i<=n;i++) if(!ok[i]) ans++;
printf("%d\n",ans);
}
}
POJ2942 Knights of the Round Table[点双连通分量|二分图染色|补图]的更多相关文章
- POJ2942 Knights of the Round Table 点双连通分量 二分图判定
题目大意 有N个骑士,给出某些骑士之间的仇恨关系,每次开会时会选一些骑士开,骑士们会围坐在一个圆桌旁.一次会议能够顺利举行,要满足两个条件:1.任意相互憎恨的两个骑士不能相邻.2.开会人数为大于2的奇 ...
- POJ2942 Knights of the Round Table 点双连通分量,逆图,奇圈
题目链接: poj2942 题意: 有n个人,能够开多场圆桌会议 这n个人中,有m对人有仇视的关系,相互仇视的两人坐在相邻的位置 且每场圆桌会议的人数仅仅能为奇书 问有多少人不能參加 解题思路: 首先 ...
- poj 2942 Knights of the Round Table(点双连通分量+二分图判定)
题目链接:http://poj.org/problem?id=2942 题意:n个骑士要举行圆桌会议,但是有些骑士相互仇视,必须满足以下两个条件才能举行: (1)任何两个互相仇视的骑士不能相邻,每个骑 ...
- UVALive-3523 Knights of the Round Table (双连通分量+二分图匹配)
题目大意:有n个骑士要在圆桌上开会,但是相互憎恶的两个骑士不能相邻,现在已知骑士们之间的憎恶关系,问有几个骑士一定不能参加会议.参会骑士至少有3个且有奇数个. 题目分析:在可以相邻的骑士之间连一条无向 ...
- 【POJ 2942】Knights of the Round Table(双联通分量+染色判奇环)
[POJ 2942]Knights of the Round Table(双联通分量+染色判奇环) Time Limit: 7000MS Memory Limit: 65536K Total Su ...
- 【POJ】2942 Knights of the Round Table(双连通分量)
http://poj.org/problem?id=2942 各种逗.... 翻译白书上有:看了白书和网上的标程,学习了..orz. 双连通分量就是先找出割点,然后用个栈在找出割点前维护子树,最后如果 ...
- Knights of the Round Table-POJ2942(双连通分量+交叉染色)
Knights of the Round Table Description Being a knight is a very attractive career: searching for the ...
- [POJ2942]Knights of the Round Table(点双+二分图判定——染色法)
建补图,是两个不仇恨的骑士连边,如果有环,则可以凑成一桌和谐的打麻将 不能直接缩点,因为直接缩点求的是连通分量,点双缩点只是把环缩起来 普通缩点 ...
- poj2942 Knights of the Round Table[点双+二分图染色]
首先转化条件,把无仇恨的人连边,然后转化成了求有哪些点不在任何一个奇环中. 一个奇环肯定是一个点双,所以想到处理出所有点双,但是也可能有的点双是一个偶环,有的可能是偶环和奇环混杂,不好判. 考察奇环性 ...
随机推荐
- .net中xml文件的导入使用(包括创建xml和导入xml)
上次有说到.net 创建xml文件的方法(一种固定方式,一种动态方法),这次记录一下怎样导入xml文件 1.导入xml文件的方法 1)xml文件格式
- 基于小脚丫的ADC081S101 电压采集595数码管显示
RTL结构图 采集模块运用SPI 通讯 MISO方式收集数据 module ad_collect(input sddata,input rst_n,output reg cs,output reg s ...
- Hibernate-chapter two
又见面啦!!!经过上一章的学习,我们大概对Hibernate框架有所了解.接下来进入我们的第二阶段——实战! ======准备数据库====== 这里使用MySQL作为示范. 创建一个名为Hibern ...
- spice server dpkg-buildpackage 打包编译备忘
一般我们会通过configure,make 编译.但是为了替换版本的方便需要把他编译成deb的包,而且还需要自定义下包名.下面就记录下我的修改过程. 注:前面关于spice server的编译过程掠过 ...
- 转载:C#中的泛型
泛型(generic)是C#语言2.0和通用语言运行时(CLR)的一个新特性.泛型为.NET框架引入了类型参数(type parameters)的概念.类型参数使得设计类和方法时,不必确定一个或多个具 ...
- Java基础学习 -- 接口
interface是一种特殊的class 接口是纯抽象类 所有的成员函数都是抽象函数: 所有的成员变量都是public static final; 接口是为了方便类的调用 一个类如果要去实现某个接口, ...
- Storm的BaseBasicBolt源码解析ack机制
我们在学习ack机制的时候,我们知道Storm的Bolt有BaseBasicBolt和BaseRichBolt.在BaseBasicBolt中,BasicOutputCollector在emit数据的 ...
- Bootstrap之样式风格与下拉菜单
背景颜色 bg-primary 字体颜色 text-primary 文字居中 text-center 按钮 btn btn-primary btn-default默认 btn-link链接 按钮大小 ...
- UILabel
//UILabel->UIView /* 1.实例化 2.属性 3.添加到父视图上 */ //实例化 UILabel *label = [[UILabel alloc] initWithFram ...
- margin css的外边距
h2{margin:10px 0;} div{margin:20px 0;} ...... <h2>这是一个标题</h2> <div> <h2>这是又一 ...