LINK:小H的小屋

尽管有论文 但是 其证明非常的不严谨 结尾甚至还是大胆猜测等字样...

先说贪心:容易发现m|n的时候此时均分两个地方就是最优的。

关于这个证明显然m在均分的时候的分点一定是n的子集 考虑不为均分的时候答案一块增多一个增少 但是增多的幅度显然更大 所以的证。

然后 当m不整除n的时候 容易想到还是均分的思路 不过 这次 对于一部分均分到的是 n/m 一部分是n/m+1.

然后暴力枚举中间的分点即可 然后进行计算。

这样复杂度O(100) 异常优秀。

考虑不那么优秀的dp.

容易想到 每放一块北墙对应多块南墙 设状态 f[i][j][k]表示前i块北墙j块南墙此时端点在j的最小值。

这状态转移是n^5的 不过大力跑也能A.值得注意的是 在状态转移的时候需要预处理一下数组g[i][j]表示i个南墙分j个距离的最小值。

因为题目中明确说了 分的位置必须为整数。当然直接计算也是可以依靠分成两段计算也行。可以发现那样也是最优的。

考虑优化 考虑优化j的状态转移 当k递增时 j的转移必然递增。

考虑到 如果j减小了那么造成对于更小的面积用更多的墙 这显然不是最优的。

所以此时总复杂度n^4.

值得注意的是 还可以优化 对于 i,j,k固定的时候 j,k的决策一定不会比 i+1,j,k的决策更大 所以再开个数组存上次的决策来优化转移。

这个证明不太会。

n^4的做法 显然可过嘛.

const int MAXN=310000,G=3;
int m,n;
db ans,k1,k2,s1;
db f[102][102][102];//f[i][j][k]表示 前i个北墙 前j个南墙 现在到达点k的最小面积
db g[102][102];
//int g[101][101][101][2];//g[i][j][k]表示 这个状态的最优决策
int main()
{
freopen("1.in","r",stdin);
gi(k1);//北
gi(k2);//南
gt(m);//北
gt(n);//南
//m<=n;
if(n%m==0)
{
db w2=100.0/(n*1.0);
db w1=100.0/(m*1.0);
ans=w2*k2*n*w2+w1*w1*k1*m;
printf("%.1lf\n",ans);
return 0;
}
rep(0,m,i)rep(0,n,j)rep(0,100,k)f[i][j][k]=INF;
rep(0,n,i)rep(0,100,k)g[i][k]=INF;
g[0][0]=0;
rep(1,n,i)rep(i,100,j)
rep(1,j,k)g[i][j]=min(g[i][j],g[i-1][j-k]+k*k*k2);
f[0][0][0]=0;
rep(1,m,i)//北墙
rep(i,n,j)//南墙
{
rep(j,100,k)
{
//枚举北墙的决策得到南墙的决策.
//cout<<f[i][j][k]<<endl;
int w2=1;//w2逐渐增大
rep(1,k,w1)//w1决策增大的时候 w2决策不会减小
{
while(g[w2+1][w1]+f[i-1][j-w2-1][k-w1]<f[i-1][j-w2][k-w1]+g[w2][w1]&&w2+1<=j)++w2;
//rep(1,j,w2)
f[i][j][k]=min(f[i][j][k],f[i-1][j-w2][k-w1]+g[w2][w1]+(db)w1*k1*w1);
//if(i<=1&&j<=1&&k<=10)cout<<f[i-1][j-w2][k-w1]<<' '<<f[ i][j][k]<<' '<<i<<' '<<j<<' '<<k<<' '<<w2<<' '<<j-w2<<' '<<k-w1<<endl;
}
}
}
printf("%.1lf",f[m][n][100]);
return 0;
}

P4274 [NOI2004]小H的小屋 dp 贪心的更多相关文章

  1. BZOJ1505: [NOI2004]小H的小屋

    BZOJ1505: [NOI2004]小H的小屋 Description 小H发誓要做21世纪最伟大的数学家.他认为,做数学家与做歌星一样,第一步要作好包装,不然本事再大也推不出去. 为此他决定先在自 ...

  2. [NOI2004]小H的小屋 贪心

    神仙贪心,洛谷没有插图导致我题一开始都没看懂.容易发现,块越多越优秀,然后为了满足题意,所以假如不能整除,就分为两个部分(能整除就直接均分就行了).前一部分是n/m,后一部分是n/m+1.数量也是固定 ...

  3. NOI2004 小H的小屋

    还是纯粹不会啊……到底该怎么办 http://blog.sina.com.cn/s/blog_86942b1401016m3g.html http://www.cnblogs.com/datam-cy ...

  4. 【Wannafly挑战赛10 - B】小H和密码(DP)

    试题链接:https://www.nowcoder.com/acm/contest/72/B 题目描述     小H在击败怪兽后,被一个密码锁挡住了去路     密码锁由N个转盘组成,编号为1~N,每 ...

  5. [BZOJ4813][CQOI2017]小Q的棋盘(DP,贪心)

    4813: [Cqoi2017]小Q的棋盘 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 804  Solved: 441[Submit][Statu ...

  6. 小H和密码

    链接:https://www.nowcoder.com/acm/contest/72/B来源:牛客网 题目描述     小H在击败怪兽后,被一个密码锁挡住了去路     密码锁由N个转盘组成,编号为1 ...

  7. 【bzoj4027】[HEOI2015]兔子与樱花 树形dp+贪心

    题目描述 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它 ...

  8. 【BZOJ4813】[CQOI2017]小Q的棋盘(贪心)

    [BZOJ4813][CQOI2017]小Q的棋盘(贪心) 题面 BZOJ 洛谷 题解 果然是老年选手了,这种题都不会做了.... 先想想一个点如果被访问过只有两种情况,第一种是进入了这个点所在的子树 ...

  9. hdu2067 小兔的棋盘 DP/数学/卡特兰数

    棋盘的一角走到另一角并且不越过对角线,卡特兰数,数据量小,可以当做dp求路径数 #include<stdio.h> ][]; int main() { ; ) { int i,j; lon ...

随机推荐

  1. Subset POJ - 3977(折半枚举+二分查找)

    题目描述 Given a list of N integers with absolute values no larger than 10 15, find a non empty subset o ...

  2. c++ 数字与字符串的相互转换

    首先推荐用用C++的stringstream. 主要原因是操作简单. 0x00 字符串转数字 // zcj_14.cpp : //该程序是一个注册机,原理是对输入的字符每个与2求异或的结果取低位即为注 ...

  3. 选课系统<基于面向过程\对象>

    2020-04-15 00:09:28 程序目录: import os BASE_PATH=os.path.dirname(os.path.dirname(__file__)) DB_PATH=os. ...

  4. Spring源码解析——核心类介绍

    前言: Spring用了这么久,虽然Spring的两大核心:IOC和AOP一直在用,但是始终没有搞懂Spring内部是怎么去实现的,于是决定撸一把Spring源码,前前后后也看了有两边,很多东西看了就 ...

  5. Linux05 /nginx

    Linux05 /nginx 目录 Linux05 /nginx 1. nginx安装.配置 2. nginx的多虚拟主机功能 3. nginx的访问日志功能,404页面功能 4. nginx的反向代 ...

  6. Django之 url组件

    本节内容 路由系统 models模型 admin views视图 template模板 路由系统 我们已知,用户从浏览器发出的请求会首先打到django url的路由分发系统这里,然后再到views视 ...

  7. conda install 失败 http404

    最近conda install keras出现各种问题,显示配置问你,配置了清华中科大的源,都不行 估计原因是:配置各种源太多,最后全部删除只留一个清华源,成功 暴力方法直接删除C:\Users\Ad ...

  8. spring boot实现简单的登录拦截

    一.思路 1.在pom.xml导入相关包 2.先写个简单的认证适配器(WebSecurityConfig extends WebSecurityConfigurerAdapter),登录拦截后就会跳转 ...

  9. clang-format的介绍和使用

    目录 参考信息 介绍 安装 命令格式 基本使用 使用.clang-format来实现自定义格式化 导出.clang-format文件 使用.clang-format文件 .clang-format配置 ...

  10. 深入浅出Java并发包—CountDownLauch原理分析 (转载)

    转载地址:http://yhjhappy234.blog.163.com/blog/static/3163283220135875759265/ CountDownLauch是Java并发包中的一个同 ...