【转】reduce端缓存数据过多出现FGC,导致reduce生成的数据无法写到hdfs
转自 http://blog.csdn.net/bigdatahappy/article/details/41726389
转这个目的,是因为该贴子中调优思路不错,值得学习
搜索推荐有一个job,1000多个map,200个reduce,运行到最后只剩一个reduce(10.39.6.130上)的时候,出现以下异常,导致job失败:
- 2014-12-04 15:49:04,297 INFO [main] org.apache.hadoop.mapred.Merger: Down to the last merge-pass, with 12 segments left of total size: 11503294914 bytes
- 2014-12-04 15:49:04,314 INFO [main] org.apache.hadoop.conf.Configuration.deprecation: mapred.task.id is deprecated. Instead, use mapreduce.task.attempt.id
- 2014-12-04 15:49:04,394 INFO [main] org.apache.hadoop.io.compress.CodecPool: Got brand-new compressor [.lzo_deflate]
- 2014-12-04 16:02:26,889 WARN [ResponseProcessor for block BP-1386326728-10.39.2.131-1382089338395:blk_1394149732_320469086] org.apache.hadoop.hdfs.DFSClient: DFSOutputStream ResponseProcessor exception for block BP-1386326728-10.39.2.131-1382089338395:blk_1394149732_320469086
- java.io.IOException: Bad response ERROR for block BP-1386326728-10.39.2.131-1382089338395:blk_1394149732_320469086 from datanode 10.39.5.193:50010
- at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer$ResponseProcessor.run(DFSOutputStream.java:819)
- 2014-12-04 16:02:26,889 WARN [ResponseProcessor for block BP-1386326728-10.39.2.131-1382089338395:blk_1394153869_320473223] org.apache.hadoop.hdfs.DFSClient: DFSOutputStream ResponseProcessor exception for block BP-1386326728-10.39.2.131-1382089338395:blk_1394153869_320473223
- java.io.IOException: Bad response ERROR for block BP-1386326728-10.39.2.131-1382089338395:blk_1394153869_320473223 from datanode 10.39.1.90:50010
- at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer$ResponseProcessor.run(DFSOutputStream.java:819)
- 2014-12-04 16:02:26,891 WARN [DataStreamer for file /dw_ext/recmd/mds6/mds_filter_relation_10/20141203/_temporary/1/_temporary/attempt_1415948652989_195149_r_000158_3/user-r-00158 block BP-1386326728-10.39.2.131-1382089338395:blk_1394149732_320469086] org.apache.hadoop.hdfs.DFSClient: Error Recovery for block BP-1386326728-10.39.2.131-1382089338395:blk_1394149732_320469086 in pipeline 10.39.6.130:50010, 10.39.5.185:50010, 10.39.5.193:50010: bad datanode 10.39.5.193:50010
- 2014-12-04 16:02:26,891 WARN [DataStreamer for file /dw_ext/recmd/mds6/mds_filter_relation_10/20141203/_temporary/1/_temporary/attempt_1415948652989_195149_r_000158_3/exposure-r-00158 block BP-1386326728-10.39.2.131-1382089338395:blk_1394153869_320473223] org.apache.hadoop.hdfs.DFSClient: Error Recovery for block BP-1386326728-10.39.2.131-1382089338395:blk_1394153869_320473223 in pipeline 10.39.6.130:50010, 10.39.1.89:50010, 10.39.1.90:50010: bad datanode 10.39.1.90:50010
- java.io.EOFException: Premature EOF: no length prefix available
- at org.apache.hadoop.hdfs.protocolPB.PBHelper.vintPrefixed(PBHelper.java:1987)
- at org.apache.hadoop.hdfs.protocol.datatransfer.PipelineAck.readFields(PipelineAck.java:176)
- at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer$ResponseProcessor.run(DFSOutputStream.java:796)
- 2014-12-04 16:05:23,743 FATAL [main] org.apache.hadoop.mapred.YarnChild: Error running child : java.lang.OutOfMemoryError: Java heap space
- at java.util.Arrays.copyOf(Arrays.java:2734)
- at java.util.Vector.ensureCapacityHelper(Vector.java:226)
- at java.util.Vector.add(Vector.java:728)
- at rec.CommonUtil.pack_Treeset(CommonUtil.java:395)
- at rec.ConvertExposure10$MyReducer.collect_exposure(ConvertExposure10.java:259)
- at rec.ConvertExposure10$MyReducer.reduce(ConvertExposure10.java:329)
- at rec.ConvertExposure10$MyReducer.reduce(ConvertExposure10.java:234)
- at org.apache.hadoop.mapred.ReduceTask.runOldReducer(ReduceTask.java:444)
- at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:392)
- at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:167)
- at java.security.AccessController.doPrivileged(Native Method)
- at javax.security.auth.Subject.doAs(Subject.java:396)
- at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1550)
- at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:162)
从异常上看,首先是reduce在往hdfs写数据时,发现建pipeline时,没有收到pipeline上最后一个节点的回应:
- 2014-12-04 16:02:26,889 WARN [ResponseProcessor for block BP-1386326728-10.39.2.131-1382089338395:blk_1394149732_320469086] org.apache.hadoop.hdfs.DFSClient: DFSOutputStream ResponseProcessor exception for block BP-1386326728-10.39.2.131-1382089338395:blk_1394149732_320469086
- java.io.IOException: Bad response ERROR for block BP-1386326728-10.39.2.131-1382089338395:blk_1394149732_320469086 from datanode 10.39.5.193:50010
- at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer$ResponseProcessor.run(DFSOutputStream.java:819)
- 2014-12-04 16:02:26,889 WARN [ResponseProcessor for block BP-1386326728-10.39.2.131-1382089338395:blk_1394153869_320473223] org.apache.hadoop.hdfs.DFSClient: DFSOutputStream ResponseProcessor exception for block BP-1386326728-10.39.2.131-1382089338395:blk_1394153869_320473223
- java.io.IOException: Bad response ERROR for block BP-1386326728-10.39.2.131-1382089338395:blk_1394153869_320473223 from datanode 10.39.1.90:50010
- at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer$ResponseProcessor.run(DFSOutputStream.java:819)
- 2014-12-04 16:02:26,891 WARN [DataStreamer for file /dw_ext/recmd/mds6/mds_filter_relation_10/20141203/_temporary/1/_temporary/attempt_1415948652989_195149_r_000158_3/user-r-00158 block BP-1386326728-10.39.2.131-1382089338395:blk_1394149732_320469086] org.apache.hadoop.hdfs.DFSClient: Error Recovery for block BP-1386326728-10.39.2.131-1382089338395:blk_1394149732_320469086 in pipeline 10.39.6.130:50010, 10.39.5.185:50010, 10.39.5.193:50010: bad datanode 10.39.5.193:50010
- 2014-12-04 16:02:26,891 WARN [DataStreamer for file /dw_ext/recmd/mds6/mds_filter_relation_10/20141203/_temporary/1/_temporary/attempt_1415948652989_195149_r_000158_3/exposure-r-00158 block BP-1386326728-10.39.2.131-1382089338395:blk_1394153869_320473223] org.apache.hadoop.hdfs.DFSClient: Error Recovery for block BP-1386326728-10.39.2.131-1382089338395:blk_1394153869_320473223 in pipeline 10.39.6.130:50010, 10.39.1.89:50010, 10.39.1.90:50010: bad datanode 10.39.1.90:50010
- java.io.EOFException: Premature EOF: no length prefix available
- at org.apache.hadoop.hdfs.protocolPB.PBHelper.vintPrefixed(PBHelper.java:1987)
- at org.apache.hadoop.hdfs.protocol.datatransfer.PipelineAck.readFields(PipelineAck.java:176)
- at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer$ResponseProcessor.run(DFSOutputStream.java:796)
这里以写block:blk_1394149732_320469086为例,pipeline[10.39.6.130:50010, 10.39.5.185:50010, 10.39.5.193:50010]上面的最后一个DN是10.39.5.193,到10.39.5.193查看该block的日志信息:
2014-12-04 16:00:57,424 INFO org.apache.hadoop.hdfs.server.datanode.DataNode: Exception for BP-1386326728-10.39.2.131-1382089338395:blk_1394149732_320469086
- java.net.SocketTimeoutException: 60000 millis timeout while waiting for channel to be ready for read. ch : java.nio.channels.SocketChannel[connected local=/10.39.5.193:50010 remote=/10.39.5.185:58225]
- at org.apache.hadoop.net.SocketIOWithTimeout.doIO(SocketIOWithTimeout.java:164)
- at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:161)
- at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:131)
- at java.io.BufferedInputStream.fill(BufferedInputStream.java:218)
- at java.io.BufferedInputStream.read1(BufferedInputStream.java:258)
- at java.io.BufferedInputStream.read(BufferedInputStream.java:317)
- at java.io.DataInputStream.read(DataInputStream.java:132)
- at org.apache.hadoop.io.IOUtils.readFully(IOUtils.java:192)
- at org.apache.hadoop.hdfs.protocol.datatransfer.PacketReceiver.doReadFully(PacketReceiver.java:213)
- at org.apache.hadoop.hdfs.protocol.datatransfer.PacketReceiver.doRead(PacketReceiver.java:134)
- at org.apache.hadoop.hdfs.protocol.datatransfer.PacketReceiver.receiveNextPacket(PacketReceiver.java:109)
- at org.apache.hadoop.hdfs.server.datanode.BlockReceiver.receivePacket(BlockReceiver.java:446)
- at org.apache.hadoop.hdfs.server.datanode.BlockReceiver.receiveBlock(BlockReceiver.java:702)
- at org.apache.hadoop.hdfs.server.datanode.DataXceiver.writeBlock(DataXceiver.java:739)
- at org.apache.hadoop.hdfs.protocol.datatransfer.Receiver.opWriteBlock(Receiver.java:124)
- at org.apache.hadoop.hdfs.protocol.datatransfer.Receiver.processOp(Receiver.java:71)
- at org.apache.hadoop.hdfs.server.datanode.DataXceiver.run(DataXceiver.java:232)
- at java.lang.Thread.run(Thread.java:662)
- 2014-12-04 16:00:57,424 INFO org.apache.hadoop.hdfs.server.datanode.DataNode: PacketResponder: BP-1386326728-10.39.2.131-1382089338395:blk_1394149732_320469086, type=LAST_IN_PIPELINE, downstreams=0:[]: Thread is interrupted.
10.39.5.193上面日志显示,在读取pipeline上一个节点10.39.5.185的Packet时,一直读取不到,直到10分钟超时:
- java.net.SocketTimeoutException: 60000 millis timeout while waiting for channel to be ready for read. ch : java.nio.channels.SocketChannel[connected local=/10.39.5.193:50010 remote=/10.39.5.185:58225]
那我们来看以下pipeline上第二个节点10.39.5.185,dn日志如下:
2014-12-04 16:00:57,988 INFO org.apache.hadoop.hdfs.server.datanode.DataNode: PacketResponder: BP-1386326728-10.39.2.131-1382089338395:blk_1394149732_320469086, type=HAS_DOWNSTREAM_IN_PIPELINE
- java.io.EOFException: Premature EOF: no length prefix available
- at org.apache.hadoop.hdfs.protocolPB.PBHelper.vintPrefixed(PBHelper.java:1987)
- at org.apache.hadoop.hdfs.protocol.datatransfer.PipelineAck.readFields(PipelineAck.java:176)
- at org.apache.hadoop.hdfs.server.datanode.BlockReceiver$PacketResponder.run(BlockReceiver.java:1083)
- at java.lang.Thread.run(Thread.java:662)
- 2014-12-04 16:00:58,008 INFO org.apache.hadoop.hdfs.server.datanode.DataNode: Exception for BP-1386326728-10.39.2.131-1382089338395:blk_1394149732_320469086
- java.net.SocketTimeoutException: 60000 millis timeout while waiting for channel to be ready for read. ch : java.nio.channels.SocketChannel[connected local=/10.39.5.185:50010 remote=/10.39.6.130:59083]
- at org.apache.hadoop.net.SocketIOWithTimeout.doIO(SocketIOWithTimeout.java:164)
- at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:161)
- at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:131)
- at java.io.BufferedInputStream.fill(BufferedInputStream.java:218)
- at java.io.BufferedInputStream.read1(BufferedInputStream.java:258)
- at java.io.BufferedInputStream.read(BufferedInputStream.java:317)
- at java.io.DataInputStream.read(DataInputStream.java:132)
- at org.apache.hadoop.io.IOUtils.readFully(IOUtils.java:192)
- at org.apache.hadoop.hdfs.protocol.datatransfer.PacketReceiver.doReadFully(PacketReceiver.java:213)
- at org.apache.hadoop.hdfs.protocol.datatransfer.PacketReceiver.doRead(PacketReceiver.java:134)
- at org.apache.hadoop.hdfs.protocol.datatransfer.PacketReceiver.receiveNextPacket(PacketReceiver.java:109)
- at org.apache.hadoop.hdfs.server.datanode.BlockReceiver.receivePacket(BlockReceiver.java:446)
- at org.apache.hadoop.hdfs.server.datanode.BlockReceiver.receiveBlock(BlockReceiver.java:702)
- at org.apache.hadoop.hdfs.server.datanode.DataXceiver.writeBlock(DataXceiver.java:739)
- at org.apache.hadoop.hdfs.protocol.datatransfer.Receiver.opWriteBlock(Receiver.java:124)
- at org.apache.hadoop.hdfs.protocol.datatransfer.Receiver.processOp(Receiver.java:71)
- at org.apache.hadoop.hdfs.server.datanode.DataXceiver.run(DataXceiver.java:232)
- at java.lang.Thread.run(Thread.java:662)
- 2014-12-04 16:00:58,009 INFO org.apache.hadoop.hdfs.server.datanode.DataNode: PacketResponder: BP-1386326728-10.39.2.131-1382089338395:blk_1394149732_320469086, type=HAS_DOWNSTREAM_IN_PIPELINE: Thread is interrupted.
和10.39.5.193日志类似,也是在等待读取pipeline的第一个节点10.39.6.130的Packet时超时:
- java.net.SocketTimeoutException: 60000 millis timeout while waiting for channel to be ready for read. ch : java.nio.channels.SocketChannel[connected local=/10.39.5.185:50010 remote=/10.39.6.130:59083]
这样说来,问题出在10.39.6.130上,也即reduce任务运行的节点上,该节点DN日志如下:
- 2014-12-04 16:00:59,987 INFO org.apache.hadoop.hdfs.server.datanode.DataNode: Exception for BP-1386326728-10.39.2.131-1382089338395:blk_1394149732_320469086
- java.net.SocketTimeoutException: 60000 millis timeout while waiting for channel to be ready for read. ch : java.nio.channels.SocketChannel[connected local=/10.39.6.130:50010 remote=/10.39.6.130:45259]
- at org.apache.hadoop.net.SocketIOWithTimeout.doIO(SocketIOWithTimeout.java:164)
- at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:161)
- at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:131)
- at java.io.BufferedInputStream.fill(BufferedInputStream.java:218)
- at java.io.BufferedInputStream.read1(BufferedInputStream.java:258)
- at java.io.BufferedInputStream.read(BufferedInputStream.java:317)
- at java.io.DataInputStream.read(DataInputStream.java:132)
- at org.apache.hadoop.io.IOUtils.readFully(IOUtils.java:192)
- at org.apache.hadoop.hdfs.protocol.datatransfer.PacketReceiver.doReadFully(PacketReceiver.java:213)
- at org.apache.hadoop.hdfs.protocol.datatransfer.PacketReceiver.doRead(PacketReceiver.java:134)
- at org.apache.hadoop.hdfs.protocol.datatransfer.PacketReceiver.receiveNextPacket(PacketReceiver.java:109)
- at org.apache.hadoop.hdfs.server.datanode.BlockReceiver.receivePacket(BlockReceiver.java:446)
- at org.apache.hadoop.hdfs.server.datanode.BlockReceiver.receiveBlock(BlockReceiver.java:702)
- at org.apache.hadoop.hdfs.server.datanode.DataXceiver.writeBlock(DataXceiver.java:739)
- at org.apache.hadoop.hdfs.protocol.datatransfer.Receiver.opWriteBlock(Receiver.java:124)
- at org.apache.hadoop.hdfs.protocol.datatransfer.Receiver.processOp(Receiver.java:71)
- at org.apache.hadoop.hdfs.server.datanode.DataXceiver.run(DataXceiver.java:232)
- at java.lang.Thread.run(Thread.java:662)
但是根据日志信息,10.39.6.130的DN也是在等待Packet,但是一直等到超时也没等到:
java.net.SocketTimeoutException: 60000 millis timeout while waiting for channel to be ready for read. ch : java.nio.channels.SocketChannel[connected local=/10.39.6.130:50010 remote=/10.39.6.130:45259]
看来不是10.39.6.130节点DN的问题,如果pipeline上面三个DN都没有问题,那问题肯定就出在dfsclient端了,也就是reduce任务在往hdfs写数据的时候根本就没有写得出去,在dfsclient上面就给堵住了,接下来查看dfsclient,也就是reduce任务进程的执行情况:
在10.39.6.130上,根据任务id:attempt_1415948652989_195149_r_000158_3 找到进程id 31050,查看内存使用情况:
- jstat -gcutil 31050 1000:
- S0 S1 E O P YGC YGCT FGC FGCT GCT
- 68.95 0.00 0.00 92.98 66.32 111 16.825 10 25.419 42.244
- 68.95 0.00 0.00 92.98 66.32 111 16.825 10 25.419 42.244
- 68.95 0.00 0.00 92.98 66.32 111 16.825 10 25.419 42.244
- 68.95 0.00 0.00 92.98 66.32 111 16.825 10 25.419 42.244
- 68.95 0.00 0.00 92.98 66.32 111 16.825 10 25.419 42.244
- 68.95 0.00 0.00 92.98 66.32 111 16.825 10 25.419 42.244
- 68.95 0.00 26.75 100.00 66.32 111 16.825 10 25.419 42.244
- 0.00 0.00 31.85 100.00 68.16 111 16.825 10 44.767 61.591
- 0.00 0.00 35.37 100.00 68.16 111 16.825 10 44.767 61.591
- 0.00 0.00 40.64 100.00 68.16 111 16.825 10 44.767 61.591
- 0.00 0.00 45.35 100.00 68.16 111 16.825 10 44.767 61.591
- 0.00 0.00 48.87 100.00 68.16 111 16.825 10 44.767 61.591
- 0.00 0.00 54.14 100.00 68.16 111 16.825 10 44.767 61.591
- 0.00 0.00 58.85 100.00 68.16 111 16.825 10 44.767 61.591
果然,JVM老年代被占满,不断执行FGC,直接stop the world,导致JVM没法对外提供服务,导致dfsclient挂起,一直不能往pipeline上面的节点写Packet,直到socket超时。
根据reduce任务最后的日志,也从侧面验证了这种观点:
Error running child : java.lang.OutOfMemoryError: Java heap space
既然是OOM导致的job失败,那是什么对象导致的内存泄露呢:
执行:
- jmap -histo:live 31050 > jmap.log
- cat jmap.log :
- num #instances #bytes class name
- ----------------------------------------------
- 1: 71824177 2872967080 java.util.TreeMap$Entry
- 2: 71822939 1723750536 java.lang.Long
- 3: 10684 24777776 [B
- 4: 47174 6425152 <methodKlass>
- 5: 47174 6408120 <constMethodKlass>
- 6: 3712 4429776 <constantPoolKlass>
- 7: 66100 3979224 <symbolKlass>
- 8: 3712 2938192 <instanceKlassKlass>
- 9: 3125 2562728 <constantPoolCacheKlass>
- 10: 3477 1267752 [I
- 11: 12923 1180224 [C
- 12: 1794 772488 <methodDataKlass>
- 13: 13379 428128 java.lang.String
- 14: 4034 419536 java.lang.Class
- 15: 6234 410312 [S
- 16: 6409 352576 [[I
- 17: 7567 242144 java.util.HashMap$Entry
- 18: 293 171112 <objArrayKlassKlass>
- 19: 4655 148960 java.util.Hashtable$Entry
- 20: 1535 135080 java.lang.reflect.Method
- 21: 842 121696 [Ljava.util.HashMap$Entry;
果然啊,reduce代码中使用了TreeMap,往里面放置了大量对象,导致出现OOM,TreeMap的Entry就站用了2.8G内存,而我们reduce设置的内存也就1.5G。
总结:对该job出现的异常,一般在以下几种情况下发生:
1、写数据块的DN出现问题,不能写入,就像之前出现的DN由于本地读问题导致xceivers(每个DN用于并发数据传输处理最大线程数)达到4096,耗尽了所有的线程,没法对新发起的输出写入做出相应。
2、网络出现异常,DN节点进或出的带宽被耗尽,导致数据写不出去或者写不进来,这种情况可以观察ganglia看节点带宽使用情况,这种情况一般比较少。当该job出现问题的时候,也怀疑过是带宽被耗尽的问题,查看了一下相关节点ganglia带宽使用情况,最大in/out 85M/s左右,最后排除是带宽问题。
3、dfsclient出现问题,长时间没反应,导致已经发起的socket超时。由于dfsclient情况比较复杂,出现问题的情况比较多,比如本问就是因为reduce出现内存溢出,jvm不断进行FGC,导致dfsclient挂起,最终socket出现超时。
【转】reduce端缓存数据过多出现FGC,导致reduce生成的数据无法写到hdfs的更多相关文章
- 在java中调用mockjs生成模拟数据
一.手写版 在前端有个模拟数据的神器 Mock.js 能生成随机数据,拦截 Ajax 请求,然后我觉得他的这个生成随机数据不错.然后我就到度娘一顿操作,没找到类似的java实现,于是就有了下面的代码: ...
- 由于检索用户的本地应用程序数据路径时出错,导致无法生成 SQL Server 的用户实例
/”应用程序中的服务器错误. 由于检索用户的本地应用程序数据路径时出错,导致无法生成 SQL Server 的用户实例.请确保该用户在此计算机上有本地用户配置文件.该连接将关闭. 堆栈跟踪: [Sql ...
- 查询数据过多页面反应慢引入缓存解决方案(Redis、H2)
问题:原系统查询接口不支持分页也不可能加入分页支持,导致Ajax查询数据过多,返回数据达到2W多条记录时响应已经极慢,查询功能不要求数据实时性,页面反应速度极慢.体验不好:经排查是由于数据量过大导 ...
- hadoop的压缩解压缩,reduce端join,map端join
hadoop的压缩解压缩 hadoop对于常见的几种压缩算法对于我们的mapreduce都是内置支持,不需要我们关心.经过map之后,数据会产生输出经过shuffle,这个时候的shuffle过程特别 ...
- 深入理解Spark 2.1 Core (十一):Shuffle Reduce 端的原理与源代码分析
http://blog.csdn.net/u011239443/article/details/56843264 在<深入理解Spark 2.1 Core (九):迭代计算和Shuffle的原理 ...
- WEB端缓存机制
WEB端缓存机制 什么是WEB缓存 Web缓存是指一个Web资源(如html页面,图片,js,数据等)存在于Web服务器和客户端(浏览器)之间的副本.缓存会根据进来的请求保存输出内容的副本:当下一个请 ...
- MapReduce在Map端的Combiner和在Reduce端的Partitioner
1.Map端的Combiner. 通过单词计数WordCountApp.java的例子,如何在Map端设置Combiner... 只附录部分代码: /** * 以文本 * hello you * he ...
- Haoop MapReduce 的Partition和reduce端的二次排序
先贴一张原理图(摘自hadoop权威指南第三版) 实际中看了半天还是不太理解其中的Partition,和reduce端的二次排序,最终根据实验来结果来验证自己的理解 1eg 数据如下 20140101 ...
- 简单服务端缓存API设计
Want 我们希望设计一套缓存API,适应不同的缓存产品,并且基于Spring框架完美集成应用开发. 本文旨在针对缓存产品定义一个轻量级的客户端访问框架,目标支持多种缓存产品,面向接口编程,目前支持简 ...
随机推荐
- 常用的HTTP协议
http协议: 基本格式:http://<host>:<port>/<path>?<query>#<frag> 示例:http://www. ...
- 基于jquery的相册预览gallery
众多有图片的产品,都要加个图片预览功能.然后市面上就出现了各种各样的相册,下面也提供一个基于jquery的相册. 源码:https://github.com/lilyH/gallery 版本: v0. ...
- 通用js类库
/* 其它通用函数 */$(function() { // var General = function() { var _self = this; /* 写 cookie 操作 */ _self.S ...
- [Effective JavaScript 笔记]第61条:不要阻塞I/O事件队列
js程序是构建在事件之上的.输入可能来自不同的外部源.在一些语言中,我们习惯地编写代码来等待某个特定的输入. var text=downloadSync('http://example.com/fil ...
- 将linux用在开发环境中
我是如何将linux用在开发环境中的 1.为什么不直接安装Linux在主机 一直想深入学习一下linux的使用,于是将家里的笔记本装了linux系统,但是要将自己的系统打造一个适合开发的环境确实是一件 ...
- Android 下载文件及写入SD卡
Android 下载文件及写入SD卡,实例代码 <?xml version="1.0" encoding="utf-8"?> <LinearL ...
- win7 64位安装redis 及Redis Desktop Manager使用
写基于dapper的一套自动化程序,看到 mgravell的另一个项目,StackExchange.Redis,之前在.NET上用过一段时间redis,不过一直是其它的驱动开发包,这个根据作者介绍,是 ...
- tmux简单使用指南
一, ubuntu安装tmux sudo apt-get install tmux 二, tmux使用 1)打开shell,输入命令tmux,,shell下边会出现绿色状态条 2)然后同时按下ctrl ...
- java 实现二分查找法
/** * 二分查找又称折半查找,它是一种效率较高的查找方法. [二分查找要求]:1.必须采用顺序存储结构 2.必须按关键字大小有序排列. * @author Administrator * */ p ...
- 《ASP.NET1200例》各种类型文件汇总
aspx是页面文件 ascx是用户控件,用户控件必须嵌入到aspx中才能使用. ascx是用户控件,相当于模板 其实ascx你可以理解为Html里的一部分代码, 只是嵌到aspx里而已, 因为aspx ...