Spark metrics on wordcount example
I read the section Metrics on spark website. I wish to try it on the wordcount example, I can't make it work.
spark/conf/metrics.properties :
# Enable CsvSink for all instances
*.sink.csv.class=org.apache.spark.metrics.sink.CsvSink # Polling period for CsvSink
*.sink.csv.period=1 *.sink.csv.unit=seconds # Polling directory for CsvSink
*.sink.csv.directory=/home/spark/Documents/test/ # Worker instance overlap polling period
worker.sink.csv.period=1 worker.sink.csv.unit=seconds # Enable jvm source for instance master, worker, driver and executor
master.source.jvm.class=org.apache.spark.metrics.source.JvmSource worker.source.jvm.class=org.apache.spark.metrics.source.JvmSource driver.source.jvm.class=org.apache.spark.metrics.source.JvmSource executor.source.jvm.class=org.apache.spark.metrics.source.JvmSource
I run my app in local like in the documentation :
$SPARK_HOME/bin/spark-submit --class "SimpleApp" --master local[4] target/scala-2.10/simple-project_2.10-1.0.jar
I checked /home/spark/Documents/test/ and it is empty.
What did I miss?
Shell:
$SPARK_HOME/bin/spark-submit --class "SimpleApp" --master local[4] --conf spark.metrics.conf=/home/spark/development/spark/conf/metrics.properties target/scala-2.10/simple-project_2.10-1.0.jar
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
INFO SparkContext: Running Spark version 1.3.0
WARN Utils: Your hostname, cv-local resolves to a loopback address: 127.0.1.1; using 192.168.1.64 instead (on interface eth0)
WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address
INFO SecurityManager: Changing view acls to: spark
INFO SecurityManager: Changing modify acls to: spark
INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(spark); users with modify permissions: Set(spark)
INFO Slf4jLogger: Slf4jLogger started
INFO Remoting: Starting remoting
INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriver@cv-local.local:35895]
INFO Utils: Successfully started service 'sparkDriver' on port 35895.
INFO SparkEnv: Registering MapOutputTracker
INFO SparkEnv: Registering BlockManagerMaster
INFO DiskBlockManager: Created local directory at /tmp/spark-447d56c9-cfe5-4f9d-9e0a-6bb476ddede6/blockmgr-4eaa04f4-b4b2-4b05-ba0e-fd1aeb92b289
INFO MemoryStore: MemoryStore started with capacity 265.4 MB
INFO HttpFileServer: HTTP File server directory is /tmp/spark-fae11cd2-937e-4be3-a273-be8b4c4847df/httpd-ca163445-6fff-45e4-9c69-35edcea83b68
INFO HttpServer: Starting HTTP Server
INFO Utils: Successfully started service 'HTTP file server' on port 52828.
INFO SparkEnv: Registering OutputCommitCoordinator
INFO Utils: Successfully started service 'SparkUI' on port 4040.
INFO SparkUI: Started SparkUI at http://cv-local.local:4040
INFO SparkContext: Added JAR file:/home/spark/workspace/IdeaProjects/wordcount/target/scala-2.10/simple-project_2.10-1.0.jar at http://192.168.1.64:52828/jars/simple-project_2.10-1.0.jar with timestamp 1444049152348
INFO Executor: Starting executor ID <driver> on host localhost
INFO AkkaUtils: Connecting to HeartbeatReceiver: akka.tcp://sparkDriver@cv-local.local:35895/user/HeartbeatReceiver
INFO NettyBlockTransferService: Server created on 60320
INFO BlockManagerMaster: Trying to register BlockManager
INFO BlockManagerMasterActor: Registering block manager localhost:60320 with 265.4 MB RAM, BlockManagerId(<driver>, localhost, 60320)
INFO BlockManagerMaster: Registered BlockManager
INFO MemoryStore: ensureFreeSpace(34046) called with curMem=0, maxMem=278302556
INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 33.2 KB, free 265.4 MB)
INFO MemoryStore: ensureFreeSpace(5221) called with curMem=34046, maxMem=278302556
INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 5.1 KB, free 265.4 MB)
INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on localhost:60320 (size: 5.1 KB, free: 265.4 MB)
INFO BlockManagerMaster: Updated info of block broadcast_0_piece0
INFO SparkContext: Created broadcast 0 from textFile at SimpleApp.scala:11
WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
WARN LoadSnappy: Snappy native library not loaded
INFO FileInputFormat: Total input paths to process : 1
INFO SparkContext: Starting job: count at SimpleApp.scala:12
INFO DAGScheduler: Got job 0 (count at SimpleApp.scala:12) with 2 output partitions (allowLocal=false)
INFO DAGScheduler: Final stage: Stage 0(count at SimpleApp.scala:12)
INFO DAGScheduler: Parents of final stage: List()
INFO DAGScheduler: Missing parents: List()
INFO DAGScheduler: Submitting Stage 0 (MapPartitionsRDD[2] at filter at SimpleApp.scala:12), which has no missing parents
INFO MemoryStore: ensureFreeSpace(2848) called with curMem=39267, maxMem=278302556
INFO MemoryStore: Block broadcast_1 stored as values in memory (estimated size 2.8 KB, free 265.4 MB)
INFO MemoryStore: ensureFreeSpace(2056) called with curMem=42115, maxMem=278302556
INFO MemoryStore: Block broadcast_1_piece0 stored as bytes in memory (estimated size 2.0 KB, free 265.4 MB)
INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on localhost:60320 (size: 2.0 KB, free: 265.4 MB)
INFO BlockManagerMaster: Updated info of block broadcast_1_piece0
INFO SparkContext: Created broadcast 1 from broadcast at DAGScheduler.scala:839
INFO DAGScheduler: Submitting 2 missing tasks from Stage 0 (MapPartitionsRDD[2] at filter at SimpleApp.scala:12)
INFO TaskSchedulerImpl: Adding task set 0.0 with 2 tasks
INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, localhost, PROCESS_LOCAL, 1391 bytes)
INFO TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1, localhost, PROCESS_LOCAL, 1391 bytes)
INFO Executor: Running task 0.0 in stage 0.0 (TID 0)
INFO Executor: Running task 1.0 in stage 0.0 (TID 1)
INFO Executor: Fetching http://192.168.1.64:52828/jars/simple-project_2.10-1.0.jar with timestamp 1444049152348
INFO Utils: Fetching http://192.168.1.64:52828/jars/simple-project_2.10-1.0.jar to /tmp/spark-cab5a940-e2a4-4caf-8549-71e1518271f1/userFiles-c73172c2-7af6-4861-a945-b183edbbafa1/fetchFileTemp4229868141058449157.tmp
INFO Executor: Adding file:/tmp/spark-cab5a940-e2a4-4caf-8549-71e1518271f1/userFiles-c73172c2-7af6-4861-a945-b183edbbafa1/simple-project_2.10-1.0.jar to class loader
INFO CacheManager: Partition rdd_1_1 not found, computing it
INFO CacheManager: Partition rdd_1_0 not found, computing it
INFO HadoopRDD: Input split: file:/home/spark/development/spark/conf/metrics.properties:2659+2659
INFO HadoopRDD: Input split: file:/home/spark/development/spark/conf/metrics.properties:0+2659
INFO MemoryStore: ensureFreeSpace(7840) called with curMem=44171, maxMem=278302556
INFO MemoryStore: Block rdd_1_0 stored as values in memory (estimated size 7.7 KB, free 265.4 MB)
INFO BlockManagerInfo: Added rdd_1_0 in memory on localhost:60320 (size: 7.7 KB, free: 265.4 MB)
INFO BlockManagerMaster: Updated info of block rdd_1_0
INFO MemoryStore: ensureFreeSpace(8648) called with curMem=52011, maxMem=278302556
INFO MemoryStore: Block rdd_1_1 stored as values in memory (estimated size 8.4 KB, free 265.4 MB)
INFO BlockManagerInfo: Added rdd_1_1 in memory on localhost:60320 (size: 8.4 KB, free: 265.4 MB)
INFO BlockManagerMaster: Updated info of block rdd_1_1
INFO Executor: Finished task 1.0 in stage 0.0 (TID 1). 2399 bytes result sent to driver
INFO Executor: Finished task 0.0 in stage 0.0 (TID 0). 2399 bytes result sent to driver
INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 139 ms on localhost (1/2)
INFO TaskSetManager: Finished task 1.0 in stage 0.0 (TID 1) in 133 ms on localhost (2/2)
INFO DAGScheduler: Stage 0 (count at SimpleApp.scala:12) finished in 0.151 s
INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
INFO DAGScheduler: Job 0 finished: count at SimpleApp.scala:12, took 0.225939 s
INFO SparkContext: Starting job: count at SimpleApp.scala:13
INFO DAGScheduler: Got job 1 (count at SimpleApp.scala:13) with 2 output partitions (allowLocal=false)
INFO DAGScheduler: Final stage: Stage 1(count at SimpleApp.scala:13)
INFO DAGScheduler: Parents of final stage: List()
INFO DAGScheduler: Missing parents: List()
INFO DAGScheduler: Submitting Stage 1 (MapPartitionsRDD[3] at filter at SimpleApp.scala:13), which has no missing parents
INFO MemoryStore: ensureFreeSpace(2848) called with curMem=60659, maxMem=278302556
INFO MemoryStore: Block broadcast_2 stored as values in memory (estimated size 2.8 KB, free 265.3 MB)
INFO MemoryStore: ensureFreeSpace(2056) called with curMem=63507, maxMem=278302556
INFO MemoryStore: Block broadcast_2_piece0 stored as bytes in memory (estimated size 2.0 KB, free 265.3 MB)
INFO BlockManagerInfo: Added broadcast_2_piece0 in memory on localhost:60320 (size: 2.0 KB, free: 265.4 MB)
INFO BlockManagerMaster: Updated info of block broadcast_2_piece0
INFO SparkContext: Created broadcast 2 from broadcast at DAGScheduler.scala:839
INFO DAGScheduler: Submitting 2 missing tasks from Stage 1 (MapPartitionsRDD[3] at filter at SimpleApp.scala:13)
INFO TaskSchedulerImpl: Adding task set 1.0 with 2 tasks
INFO TaskSetManager: Starting task 0.0 in stage 1.0 (TID 2, localhost, PROCESS_LOCAL, 1391 bytes)
INFO TaskSetManager: Starting task 1.0 in stage 1.0 (TID 3, localhost, PROCESS_LOCAL, 1391 bytes)
INFO Executor: Running task 0.0 in stage 1.0 (TID 2)
INFO Executor: Running task 1.0 in stage 1.0 (TID 3)
INFO BlockManager: Found block rdd_1_0 locally
INFO Executor: Finished task 0.0 in stage 1.0 (TID 2). 1830 bytes result sent to driver
INFO TaskSetManager: Finished task 0.0 in stage 1.0 (TID 2) in 9 ms on localhost (1/2)
INFO BlockManager: Found block rdd_1_1 locally
INFO Executor: Finished task 1.0 in stage 1.0 (TID 3). 1830 bytes result sent to driver
INFO TaskSetManager: Finished task 1.0 in stage 1.0 (TID 3) in 10 ms on localhost (2/2)
INFO DAGScheduler: Stage 1 (count at SimpleApp.scala:13) finished in 0.011 s
INFO TaskSchedulerImpl: Removed TaskSet 1.0, whose tasks have all completed, from pool
INFO DAGScheduler: Job 1 finished: count at SimpleApp.scala:13, took 0.024084 s
Lines with a: 5, Lines with b: 12
  
Spark metrics on wordcount example的更多相关文章
- Spark初步 从wordcount开始
		Spark初步-从wordcount开始 spark中自带的example,有一个wordcount例子,我们逐步分析wordcount代码,开始我们的spark之旅. 准备工作 把README.md ... 
- Spark练习之wordcount,基于排序机制的wordcount
		Spark练习之wordcount 一.原理及其剖析 二.pom.xml 三.使用Java进行spark的wordcount练习 四.使用scala进行spark的wordcount练习 五.基于排序 ... 
- Spark Streaming的wordcount案例
		之前测试的一些spark案例都是采用离线处理,spark streaming的流处理一样可以运行经典的wordcount. 基本环境: spark-2.0.0 scala-2.11.0 IDEA-15 ... 
- Spark学习之wordcount程序
		实例代码: import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.ap ... 
- 006 Spark中的wordcount以及TopK的程序编写
		1.启动 启动HDFS 启动spark的local模式./spark-shell 2.知识点 textFile: def textFile( path: String, minPartitions: ... 
- 在Spark上运行WordCount程序
		1.编写程序代码如下: Wordcount.scala package Wordcount import org.apache.spark.SparkConf import org.apache.sp ... 
- 提交任务到spark(以wordcount为例)
		1.首先需要搭建好hadoop+spark环境,并保证服务正常.本文以wordcount为例. 2.创建源文件,即输入源.hello.txt文件,内容如下: tom jerry henry jim s ... 
- 50、Spark Streaming实时wordcount程序开发
		一.java版本 package cn.spark.study.streaming; import java.util.Arrays; import org.apache.spark.SparkCon ... 
- Spark中的Wordcount
		目录 通过scala语言基于local编写spark的Wordcount 基于yarn去调度WordCount 通过scala语言基于local编写spark的Wordcount import org ... 
随机推荐
- jquery基础总结
			什么是jQuery? 就是一个JavaScript函数库,开源的.jQuery能做什么 JavaScript是做什么的,jQuery就是做什么的,Jquery是对javas ... 
- linux kill信号列表
			linux kill信号列表 $ kill -l1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL5) SIGTRAP 6) ... 
- C++编程思想重点笔记(下)
			上篇请看:C++编程思想重点笔记(上) 宏的好处与坏处 宏的好处:#与##的使用 三个有用的特征:字符串定义.字符串串联和标志粘贴. 字符串定义的完成是用#指示,它容许设一个标识符并把它转化为字符串, ... 
- <转>Npoi导入导出Excel操作<载>
			//Datatable导出Excel private static void GridToExcelByNPOI(DataTable dt, string strExcelFileName) { tr ... 
- 《Hadoop基础教程》之初识Hadoop
			Hadoop一直是我想学习的技术,正巧最近项目组要做电子商城,我就开始研究Hadoop,虽然最后鉴定Hadoop不适用我们的项目,但是我会继续研究下去,技多不压身. <Hadoop基础教程> ... 
- linux 客户端 Socket 非阻塞connect编程
			开发测试环境:虚拟机CentOS,windows网络调试助手 非阻塞模式有3种用途 1.三次握手同时做其他的处理.connect要花一个往返时间完成,从几毫秒的局域网到几百 ... 
- log2取整效率测试
			RMQ问题中有个ST算法,当然还有个标准算法.LCA问题可以转化为带限制的RMQ(RMQ+-1)问题来解决.我们姑且认为这些问题的时间复杂度是查询$O(1)$的.但是,注意到对于RMQ(/+-1)问题 ... 
- 【Markdown】notepad++ 支持 markdown语法、预览
			Notepad++中支持Markdown 最近在学习Markdown语言的使用,很想在XP主机上使用Markdown的离线编辑器,但MarkdownPad.作业部分的离线客户端都不能再XP上运行, ... 
- 交换排序—冒泡排序(Bubble Sort)
			基本思想: 在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒. 即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就 ... 
- Search Range in Binary Search Tree
			Given two values k1 and k2 (where k1 < k2) and a root pointer to a Binary Search Tree. Find all t ... 
