CF EDU 1101D GCD Counting

题意

   有一颗树,每个节点有一个值,问树上最长链的长度,要求链上的每个节点的GCD值大于1。

思路

  由于每个数的质因子很少,题目的数据200000<2*3*5*7*11*13*17=510510。所以每个节点的质因子个数不多。那么树形DP的时候直接枚举每种因子即可。

//#pragma GCC optimize(3)
//#pragma comment(linker, "/STACK:102400000,102400000") //c++
// #pragma GCC diagnostic error "-std=c++11"
// #pragma comment(linker, "/stack:200000000")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") #include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> using namespace std;
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull;
//typedef __int128 bll;
typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
#define max3(a,b,c) max(max(a,b), c);
#define min3(a,b,c) min(min(a,b), c);
//priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //18
// const int mod = 998244353;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
}
/*-----------------------showtime----------------------*/ const int maxn = 2e5+;
int a[maxn]; vector<int>mp[maxn];
int vis[maxn];
int dp[maxn];
int ans = ;
vector<int>p[maxn],t[maxn]; void dfs(int u, int fa){
for(int i=; i<mp[u].size(); i++){
int v = mp[u][i];
if(v == fa)continue;
dfs(v,u); for(int j=; j<p[u].size(); j++){
for(int k=; k<p[v].size(); k++){
if(p[u][j] == p[v][k]){
ans = max(ans, t[u][j] + t[v][k]);
t[u][j] = max(t[u][j], t[v][k] + );
}
}
}
}
if(a[u] > ) ans = max(ans, );
} int main(){
int n; scanf("%d", &n);
int flag = ;
for(int i=; i<=n; i++) {
scanf("%d", &a[i]);
int x = a[i];
for(ll j=; j*j <=x; j++){
if(x%j == ){
p[i].pb(j);
t[i].pb();
while(x%j==) x/=j;
}
}
if(x > ){
p[i].pb(x);
t[i].pb();
}
if(a[i] > ) flag = ;
} if(flag) {
puts("");
return ;
}
for(int i=; i<n; i++){
int u,v;
scanf("%d%d", &u, &v);
mp[u].pb(v);
mp[v].pb(u);
} dfs(,-);
printf("%d\n", ans);
return ;
}


CF EDU 1101D GCD Counting 树形DP + 质因子分解的更多相关文章

  1. CF 337D Book of Evil 树形DP 好题

    Paladin Manao caught the trail of the ancient Book of Evil in a swampy area. This area contains n se ...

  2. CF 461B Appleman and Tree 树形DP

    Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other ...

  3. CF 161D Distance in Tree 树形DP

    一棵树,边长都是1,问这棵树有多少点对的距离刚好为k 令tree(i)表示以i为根的子树 dp[i][j][1]:在tree(i)中,经过节点i,长度为j,其中一个端点为i的路径的个数dp[i][j] ...

  4. CF 219D 树形DP

    CF 219D [题目链接]CF 219D [题目类型]树形DP &题意: 给一个n节点的有向无环图,要找一个这样的点:该点到其它n-1要逆转的道路最少,(边<u,v>,如果v要到 ...

  5. cf842C 树形dp+gcd函数

    树形dp用一下就好了 /* dp[i]表示不删节点的gcd值 每个结点开个vector用来存储删一个点之后的最大值 然后排序 去重 */ #include<bits/stdc++.h> # ...

  6. CF 486D vailid set 树形DP

    As you know, an undirected connected graph with n nodes and n - 1 edges is called a tree. You are gi ...

  7. CF 219D Choosing Capital for Treeland 树形DP 好题

    一个国家,有n座城市,编号为1~n,有n-1条有向边 如果不考虑边的有向性,这n个城市刚好构成一棵树 现在国王要在这n个城市中选择一个作为首都 要求:从首都可以到达这个国家的任何一个城市(边是有向的) ...

  8. CF 463A && 463B 贪心 && 463C 霍夫曼树 && 463D 树形dp && 463E 线段树

    http://codeforces.com/contest/462 A:Appleman and Easy Task 要求是否全部的字符都挨着偶数个'o' #include <cstdio> ...

  9. CF F - Tree with Maximum Cost (树形DP)给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大。输出最大的值。

    题目意思: 给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大.输出最大的值. ...

随机推荐

  1. 遇见Python集合类型

    Python目前有两种内置集合类型,set和frozenset. Ⅰ.两者区别 set是可变的,没有哈希值,其内容可以使用add()和remove()这样的方法来改变,所以不能被用作字典的键或其他集合 ...

  2. SpringBoot RabbitMQ 整合使用

    ![](http://ww2.sinaimg.cn/large/006tNc79ly1g5jjb62t88j30u00gwdi2.jpg) ### 前提 上次写了篇文章,[<SpringBoot ...

  3. java支付宝app支付-代码实现

    1.我们需要在支付宝商户平台配置好,取到四个参数如下(这是支付宝官方配置地址):https://www.cnblogs.com/fuzongle/p/10217144.html 合作身份者ID:123 ...

  4. django drf框架中的user验证以及JWT拓展的介绍

    登录注册是几乎所有网站都需要去做的接口,而说到登录,自然也就涉及到验证以及用户登录状态保存,最近用DRF在做的一个关于网上商城的项目中,引入了一个拓展DRF JWT,专门用于做验证和用户状态保存.这个 ...

  5. Netty学习(五)-DelimiterBasedFrameDecoder

    上一节我们说了LineBasedframeDecoder来解决粘包拆包的问题,TCP以流的方式进行数据传输,上层应用协议为了对消息进行区分,一般采用如下4种方式: 消息长度固定,累计读取到消息长度总和 ...

  6. kubernetes API服务器的安全防护

    12.1.了解认证机制 启动API服务器时,通过命令行选项可以开启认证插件. 12.1.1.用户和组 了解用户: 分为两种连接到api服务器的客户端: 1.真实的人 2.pod,使用一种称为Servi ...

  7. python 之 前端开发(基本选择器、组合选择器、 交集与并集选择器、序列选择器、属性选择器、伪类选择器、伪元素选择器)

    11.3 css 11.31 基本选择器 11.311 id选择器 根据指定的id名称,在当前界面中找到对应的唯一一个的标签,然后设置属性 <!DOCTYPE html> <html ...

  8. Android Pie 私人 DNS 使用教程

    本文首发于:微信公众号「运维之美」,公众号 ID:Hi-Linux. ​「运维之美」是一个有情怀.有态度,专注于 Linux 运维相关技术文章分享的公众号.公众号致力于为广大运维工作者分享各类技术文章 ...

  9. Jmeter使用csv文件读取测试数据

    最近有同事在测试过程中遇到需要造批量测试数据的问题,这些数据往往是同一种单据,但是单据的内容不同,如果手工创建就比较费时费力.那我们用jmeter的csv文件来读取测试数据就完美解决了这个问题. 我们 ...

  10. XML简单了解一下

    XML是一种纯文本文档.HTML,标记是已经被W3C规定好的,自己创建一个标签是不被允许的. XML现在的用途是用来存储数据.config文件就是个XML文档.XML是可以自定义的. 每一个XML文档 ...