图论-最小生成树<Kruskal>
以上是昨天的Blog,有需要者请先阅读完以上再阅读今天的Blog。
可能今天的有点乱,好好理理,认真看完相信你会懂得
然而,文中提到的所有的算法在本人Blog中都会后期有讲解。推荐Blog
分割线
第三天
引子:昨天我们简单讲了讲最小生成树<Dijkstra,Floyd>算法,今天的课程就开始啦!
今天我们要讲的是:最小生成树
Top1:概念
最小生成树,听起来好像是树呀,为什么会是图论呢?其实,处理最小生成树问题前给出的东西,就是一个图,只不过进行操作后要求变成一个最小生成树罢了。
那什么是最小生成树呢?
我们把这个词语拆开来看。
树 ,我们都好理解,父亲儿砸祖先啥的如果不知道的话......先百度完树再来看吧 ,那么我们根据树的特性可以得出一个结论:
最小生成树是没有环的
生成树 ,就是一个点到另一个点的路径是 唯一的 ,(可以通过树的无环性质证明),也就是 一个用N-1条边连接的树,且所有点到其他点的路径唯一
最小 代表最终生成树的边权和最小(不知道什么是边权的到博主的Blog里面去看吧)。
这里就有一个问题了:为什么会是N-1条边呢,而不是N-2或者N+1条边?
既然要把N个点用最少数量的边(这里不是上面“最小”的定义)将所有点连接起来,(忽略边权)上过小学的都知道,将两个点连起来是要一条边,三个点要两条边,哪里见过三个点用一条边连起来的?用N条边或N+1条边(即上述例子的三条边或四条边),自然就会浪费边了。
主要还是靠自己动手画图思考。
Top2:算法-Kruskal
概念我们讲完了,进入正题。
其实最小生成树还有个算法叫做Prim,Prim算法和Kruskal算法在于,一个在稀疏图中更快,一个在稠密图中更快。然而,Kruskal在比赛中会更好用。
那讲了这么多,Kruskal到底怎么用呢?
我们都知道了树没有环,那么只需要每次取权值最小的边,只要加入这条边之后不行成环,就可以了。
有点像贪心,但是要判断有没有环。
怎么判断有环没环呢?
——并查集
所以代码就很简答啦!
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 5000 + 10;
struct Line{
int x, y;
int dis;
bool operator < (const Line& next) const {
return dis > next.dis;
}
};
priority_queue<Line> line;
int n, m, now;
int fa[MAXN];
int ans;
inline int read(){
int f = 1, x = 0;
char c = getchar();
while (c < '0' || c > '9')
{
if (c == '-')
f = -1;
c = getchar();
}
while (c >= '0' && c <= '9')
{
x = x * 10 + c - '0';
c = getchar();
}
return f * x;
}
int find(int x){
if(fa[x] == x)return x;
return fa[x] = find(fa[x]);
}
int main(){
n = read(),m = read();
for(int i = 1;i <= m; i++){
int x,y,z;
x = read(),y = read(),z = read();
Line tot = {x,y,z};
line.push(tot);
}
for(int i = 1;i <= n; i++){
fa[i] = i;
}
while(!line.empty()){
Line tot = line.top();
line.pop();
int nx = tot.x, ny = tot.y;
if(find(nx) == find(ny)){
continue;
}
fa[find(nx)] = find(ny);
ans += tot.dis;
now++;
if(now == n - 1){
printf("%d",ans);
return 0;
}
}
puts("orz");
return 0;
}
至于Prim吗......博主太菜,告辞!
图论-最小生成树<Kruskal>的更多相关文章
- 图论-最小生成树-Kruskal算法
有关概念: 最小生成树:在连通图G中,连接图G所有顶点且总权最小的边构成的树 思路: 首先对边按权从小到大排序,紧接着枚举每一条边,如果两个结点的祖先结点不同(并查集),则连上此边,直到边数等于结点数 ...
- 关于最小生成树 Kruskal 和 Prim 的简述(图论)
模版题为[poj 1287]Networking. 题意我就不说了,我就想简单讲一下Kruskal和Prim算法.卡Kruskal的题似乎几乎为0.(●-`o´-)ノ 假设有一个N个点的连通图,有M条 ...
- 模板——最小生成树kruskal算法+并查集数据结构
并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...
- 最小生成树——Kruskal与Prim算法
最小生成树——Kruskal与Prim算法 序: 首先: 啥是最小生成树??? 咳咳... 如图: 在一个有n个点的无向连通图中,选取n-1条边使得这个图变成一棵树.这就叫“生成树”.(如下图) 每个 ...
- 【转】最小生成树——Kruskal算法
[转]最小生成树--Kruskal算法 标签(空格分隔): 算法 本文是转载,原文在最小生成树-Prim算法和Kruskal算法,因为复试的时候只用到Kruskal算法即可,故这里不再涉及Prim算法 ...
- CF1253F Cheap Robot(神奇思路,图论,最短路,最小生成树/Kruskal 重构树/并查集)
神仙题. 先考虑平方级别的暴力怎么做. 明显答案有单调性,先二分 \(c\). 先最短路预处理 \(dis_u\) 表示 \(u\) 到离它最近的充电站的距离(一开始把 \(1\) 到 \(k\) 全 ...
- 图论——最小生成树:Prim算法及优化、Kruskal算法,及时间复杂度比较
最小生成树: 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边.简单来说就是有且仅有n个点n-1条边的连通图. 而最小生成树就是最小权 ...
- 数据结构之 图论---最小生成树(prim + kruskal)
图结构练习——最小生成树 Time Limit: 1000MS Memory limit: 65536K 题目描述 有n个城市,其中有些城市之间可以修建公路,修建不同的公路费用是不同的.现在我们想知 ...
- 最小生成树 kruskal算法 codevs 1638 修复公路
1638 修复公路 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题解 题目描述 Description A地区在地震过后,连接所有村庄的公 ...
随机推荐
- Spring Boot(一) Hello World
一.Spring Boot之我见 Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程.该框架使用了特定的方式来进行配置,从 ...
- C#基础知识总结(二)--泛型
什么是泛型 我们在编写程序时,经常遇到两个模块的功能非常相似,只是一个是处理int数据,另一个是处理string数据,或者其他自定义的数据类型,但我们没有办法,只能分别写多个方法处理每个数据类型,因为 ...
- jar 命令使用
1.jar命令一般用来对jar包文件处理,jar包是由JDK安装目录\bin\jar.exe命令生成的,当我们安装好JDK,设置好path路径,就可以正常使用jar.exe命令,它会用lib\tool ...
- mybatis批量插入应用
一.foreach简单介绍 foreach的主要用在构建in条件中,它可以在SQL语句中进行迭代一个集合. foreach元素的属性主要有item,index,collection,open,sepa ...
- 【SQL server基础】objectproperty()函数
SQL Server OBJECTPROPERTY使用方法 OBJECTPROPERTY 返回有关当前数据库中的模式作用域对象的信息.此函数不能用于不是模式范围的对象,例如数据定义语言(DDL)触 ...
- yii2 验证规则使用方法
required : 必须值验证属性 [['字段名'],required,'requiredValue'=>'必填值','message'=>'提示信息']; #说明:CRequiredV ...
- JAVA TCP/IP网络通讯编程(二)
一个实例通过client端和server端通讯 客户端通过TCP/IP传输资源文件,比如图片,文字,音频,视频等..... 服务端接受到文件存入本地磁盘,返回接受到:“收到来自于"+s.ge ...
- Python集训营45天—Day08 (文件操作)
目录 1. 文件操作介绍 2. 文件的读写 2.1 文本文件 2.2 二进制文件 2.3 JSON文件 3. 文件的定位,重命名和删除 4. 文件夹的相关操作 1. 文件操作介绍 大家应该听说过一句话 ...
- Creator3D长什么样?看看官方惊艳的DEMO就知道了,附在线体验!
Shawn 这两天在学习 Creator3D 的官方案例,由于是刚接触 Creator3D 很多东西在没弄清楚之前还是以简单的编辑介绍为主,先了解一下3D场景的基本操作: 观查场景:按住鼠标右键以自己 ...
- Java动手动脑第四讲课堂作业
动手动脑1 完全“手写代码实现”随机数生成 纯随机数发生器