每次都是看了就忘,看了就忘,从今天开始,细节开始,推一遍交叉熵。

我的第一篇CSDN,献给你们(有错欢迎指出啊)。

一.什么是交叉熵

交叉熵是一个信息论中的概念,它原来是用来估算平均编码长度的。给定两个概率分布p和q,通过q来表示p的交叉熵为:

注意,交叉熵刻画的是两个概率分布之间的距离,或可以说它刻画的是通过概率分布q来表达概率分布p的困难程度,p代表正确答案,q代表的是预测值,交叉熵越小,两个概率的分布约接近。

那么,在神经网络中怎样把前向传播得到的结果也变成概率分布呢?Softmax回归就是一个非常有用的方法。(所以面试官会经常问你,为什么交叉熵经常要个softmax一起使用?)

假设原始的神经网络的输出为,那么经过Softmax回归处理之后的输出为: 

这样就把神经网络的输出也变成了一个概率分布,从而可以通过交叉熵来计算预测的概率分布和真实答案的概率分布之间的距离了。

举个例子,假设有一个3分类问题,某个样例的正确答案是(1,0,0),这个模型经过softmax回归之后的预测答案是(0.5,0.4,0.1),那么预测和正确答案之间的交叉熵为:

如果另一个模型的预测是(0.8,0.1,0.1),那么这个预测值和真实值之间的交叉熵是:

显然我们看到第二个预测要优于第一个。这里的(1,0,0)就是正确答案p,(0.5,0.4,0.1)和(0.8,0.1,0.1)就是预测值q,显然用(0.8,0.1,0.1)表达(1,0,0)的困难程度更小。

经典损失函数:交叉熵(附tensorflow)的更多相关文章

  1. 机器学习之路:tensorflow 深度学习中 分类问题的损失函数 交叉熵

    经典的损失函数----交叉熵 1 交叉熵: 分类问题中使用比较广泛的一种损失函数, 它刻画两个概率分布之间的距离 给定两个概率分布p和q, 交叉熵为: H(p, q) = -∑ p(x) log q( ...

  2. TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵

    TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵 神经元模型:用数学公式比表示为:f(Σi xi*wi + b), f为激活函数 神经网络 是以神经元为基本单位构成的 激 ...

  3. 【转载】深度学习中softmax交叉熵损失函数的理解

    深度学习中softmax交叉熵损失函数的理解 2018-08-11 23:49:43 lilong117194 阅读数 5198更多 分类专栏: Deep learning   版权声明:本文为博主原 ...

  4. 理解交叉熵(cross_entropy)作为损失函数在神经网络中的作用

    交叉熵的作用 通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层设置n个输出节点,无论在浅层神经网络还是在CNN中都是如此,比如,在AlexNet中最后的输出层有1000个节点: 而即便是R ...

  5. [ch03-02] 交叉熵损失函数

    系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI, 点击star加星不要吝啬,星越多笔者越努力. 3.2 交叉熵损失函数 交叉熵(Cross Entrop ...

  6. 【深度学习】softmax回归——原理、one-hot编码、结构和运算、交叉熵损失

    1. softmax回归是分类问题 回归(Regression)是用于预测某个值为"多少"的问题,如房屋的价格.患者住院的天数等. 分类(Classification)不是问&qu ...

  7. 经典的损失函数:交叉熵和MSE

    经典的损失函数: ①交叉熵(分类问题):判断一个输出向量和期望向量有多接近.交叉熵刻画了两个概率分布之间的距离,他是分类问题中使用比较广泛的一种损失函数.概率分布刻画了不同事件发生的概率. 熵的定义: ...

  8. 第五节,损失函数:MSE和交叉熵

    损失函数用于描述模型预测值与真实值的差距大小,一般有两种比较常见的算法——均值平方差(MSE)和交叉熵. 1.均值平方差(MSE):指参数估计值与参数真实值之差平方的期望值. 在神经网络计算时,预测值 ...

  9. 『TensorFlow』分类问题与两种交叉熵

    关于categorical cross entropy 和 binary cross entropy的比较,差异一般体现在不同的分类(二分类.多分类等)任务目标,可以参考文章keras中两种交叉熵损失 ...

随机推荐

  1. The Preliminary Contest for ICPC Asia Shanghai 2019

    传送门 B. Light bulbs 题意: 起初\(n\)个位置状态为\(0\),\(m\)次操作,每次操作更换区间状态:\(0\)到\(1\),\(1\)到\(0\). 共有\(T,T\leq 1 ...

  2. [译]ABP v1.0终于发布了!

    ABP v1.0终于发布了! 今天是个大日子!经过约3年的不断开发,第一个稳定的ABP版本,1.0,已经发布了.感谢为该项目做出贡献或试用过的每个人. 立即开始使用新的ABP框架:abp.io/get ...

  3. 通过组件实现相同group下字符串拼接

    实现效果 组件处理流程如下:         1 使用Sorter组件对ColA进行排序       2 使用expression组件进行如下配置 3 使用aggregate组件进行如下配置 ColA ...

  4. hibernate的对象/关系映射结果为空,exists查不到值的问题-20190823

    1: hibernate的对象/关系映射 情景:在使用@onetotone/@manytonone时关联结果为空 原因:在使用这个注解的时候,默认的时crossjoin(交叉连接),在进行查询时以及排 ...

  5. Python的互斥锁与信号量

    并发与锁 a. 多个线程共享数据的时候,如果数据不进行保护,那么可能出现数据不一致现象,使用锁,信号量.条件锁 b. c.互斥锁1. 互斥锁,是使用一把锁把代码保护起来,以牺牲性能换取代码的安全性,那 ...

  6. Linq分页排序通用方法

    1.通用方法 2.调用 -----------------------------1.------------------------------------------- public class ...

  7. @Transactional什么情况才生效

    只有runtimeexception并且没有被try catch处理的异常才会回滚. 想要回滚,不要去try 还有一个坑时逻辑上的问题,之前总以为插入,更新后,返回值为0,@Transactional ...

  8. win7和win10自带桌面便签哪里找

    一些小伙伴习惯使用windows自带的便签功能,但win7和win10区别较大, 导致更新系统后不知道在哪里找,甚至以为没有该功能了, 其实不然,下面我总结了2种方法,希望能帮到有需要的人 win7( ...

  9. tinker接入

    对于热修复无非就是两大类,一类是tencent代表的classloader模式的,另一类是阿里系代表的底层方面替换. 下面以本人的经验介绍下微信的tinker接入: 命令行接入方式: gradle接入 ...

  10. win10 关闭 “在时间线中查看更多日期” 提示

    在组策略中,禁用允许上传用户活动