题目链接:http://poj.org/problem?id=1797

题意:给出两只青蛙的坐标A、B,和其他的n-2个坐标,任一两个坐标点间都是双向连通的。显然从A到B存在至少一条的通路,每一条通路的元素都是这条通路中前后两个点的距离,这些距离中又有一个最大距离。现在要求求出所有通路的最大距离,并把这些最大距离作比较,把最小的一个最大距离作为青蛙的最小跳远距离。

有一个明显的方法就是dfs一遍但是肯定会te,所以可以考虑一下用dp的思想。

类似记忆化搜索的思想,由于数据比较小所以不用记忆化搜索也行直接利用套3层for

dp[i][j]表示从i点到j点的minimax distance(就是题目所要求的)mmp[i][j]表示i

点到j点的距离。

for(int k = 1 ; k <= n ; k++) {

for(int i = 1 ; i <= n ; i++) {

for(int j = 1 ; j <= n ; j++) {

MIN = max(mmp[i][k] , mmp[k][j]);

MIN2 = max(dp[i][k] , dp[k][j]);

dp[i][j] = min(dp[i][j] , min(MIN , MIN2));

dp[j][i] = dp[i][j];

}

}

}

其实这3层for也是利用了floyd的思想。

#include <iostream>
#include <cstring>
#include <string>
#include <cmath>
#include <cstdio>
using namespace std;
double mmp[210][210] , dp[210][210] , MIN , MIN2;
int n , x , y;
struct TnT {
int x , y , num;
};
bool vis[220]; int main() {
int ans = 0;
while(scanf("%d" , &n)) {
ans++;
if(!n)
break;
TnT T[210];
for(int i = 1 ; i <= n ; i++) {
scanf("%d%d" , &x , &y);
T[i].num = i;
T[i].x = x;
T[i].y = y;
}
for(int i = 1 ; i <= n ; i++) {
for(int j = 1 ; j <= n ; j++) {
mmp[i][j] = (double)400000;
dp[i][j] = (double)400000;
}
}
for(int i = 1 ; i <= n; i++) {
int x1 = T[i].x , y1 = T[i].y , pos1 = T[i].num , x2 , y2 , pos2 , m;
for(int j = 1 ; j <= n ; j++) {
x2 = T[j].x , y2 = T[j].y , pos2 = T[j].num;
m = 1.0 * (x1 - x2) * (x1 - x2) + 1.0 * (y1 - y2) * (y1 - y2);
mmp[pos1][pos2] = min(mmp[pos1][pos2] , 1.0 * sqrt(double(m)));
mmp[pos2][pos1] = min(mmp[pos1][pos2] , mmp[pos2][pos1]);
}
}
for(int k = 1 ; k <= n ; k++) {
for(int i = 1 ; i <= n ; i++) {
for(int j = 1 ; j <= n ; j++) {
MIN = max(mmp[i][k] , mmp[k][j]);
MIN2 = max(dp[i][k] , dp[k][j]);
dp[i][j] = min(dp[i][j] , min(MIN , MIN2));
dp[j][i] = dp[i][j];
}
}
}
printf("Scenario #%d\n" , ans);
printf("Frog Distance = %.3f\n\n" , dp[1][2]);
}
return 0;
}

poj 2253 Frogger(floyd变形)的更多相关文章

  1. POJ 2253 Frogger Floyd

    原题链接:http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissi ...

  2. POJ 2253 Frogger floyd算法

    题目:click here 题意: 给出两只青蛙的坐标A.B,和其他的n-2个坐标,任意两坐标间是双向连通的.显然从A到B存在至少一条的通路,每一条通路的元素都是这条通路中前后两个点的距离,这些距离中 ...

  3. 最短路(Floyd_Warshall) POJ 2253 Frogger

    题目传送门 /* 最短路:Floyd算法模板题 */ #include <cstdio> #include <iostream> #include <algorithm& ...

  4. POJ 2253 Frogger ,poj3660Cow Contest(判断绝对顺序)(最短路,floyed)

    POJ 2253 Frogger题目意思就是求所有路径中最大路径中的最小值. #include<iostream> #include<cstdio> #include<s ...

  5. POJ. 2253 Frogger (Dijkstra )

    POJ. 2253 Frogger (Dijkstra ) 题意分析 首先给出n个点的坐标,其中第一个点的坐标为青蛙1的坐标,第二个点的坐标为青蛙2的坐标.给出的n个点,两两双向互通,求出由1到2可行 ...

  6. POJ 2253 Frogger(dijkstra 最短路

    POJ 2253 Frogger Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fion ...

  7. POJ 2253 Frogger【最短路变形——路径上最小的最大权】

    链接: http://poj.org/problem?id=2253 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

  8. poj 2253 Frogger 最小瓶颈路(变形的最小生成树 prim算法解决(需要很好的理解prim))

    传送门: http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissi ...

  9. POJ 2253 Frogger

    题目链接:http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissi ...

  10. POJ2253——Frogger(Floyd变形)

    Frogger DescriptionFreddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fi ...

随机推荐

  1. Linux 常用命令及使用方法

    1.  type   :查询命令 是否属于shell解释器 2.  help  : 帮助命令3.  man : 为所有用户提供在线帮助4.  ls  : 列表显示目录内的文件及目录 -l    以长格 ...

  2. wscript.shell 使用

    <%@ Page Language="VB" validateRequest = "false" aspcompat = "true" ...

  3. 爬虫获取搜狐汽车的配置信息 和swf动态图表的销量数据-------详细教学

    前情提要:需要爬取搜狐汽车的所有配置信息,具体配置对应的参数. 以及在动态图表上的历史销量. 比如: 一汽奥迪旗下Q5L 的<40 TFSI 荣享进取型 国VI >的历史销量和该配置的参数 ...

  4. Windows 下配置 Vagrant 环境

    Vagrant是一个基于 Ruby 的工具,用于创建和部署虚拟化开发环境.它使用 Oracle 的开源VirtualBox虚拟化系统. Vagrant 在快速搭建开发环境方面是很赞的,试想一个团队中, ...

  5. Tomcat源码分析 (二)----- Tomcat整体架构及组件

    前言 Tomcat的前身为Catalina,而Catalina又是一个轻量级的Servlet容器.在美国,catalina是一个很美的小岛.所以Tomcat作者的寓意可能是想把Tomcat设计成一个优 ...

  6. ASP.NET Core MVC 之控制器(Controller)

    操作(action)和操作结果(action result)是 ASP.NET MVC 构建应用程序的一个基础部分. 在 ASP.NET MVC 中,控制器用于定义和聚合一组操作.操作是控制器中处理传 ...

  7. docker 容器之间互联

    容器之间的互联 一. 实验目的: 1.       熟悉容器之间基本的网络原理: 2.       掌握容器之间互联的方法: 二. 实验环境: Ubuntu16.04+Docker 三. 实验内容: ...

  8. sql server数据库查询链接服务器

    服务器对象->链接服务器: 或者 select  * from sys.servers: 找到服务器对象名称 select  * from [服务器对象名称].[数据库名称].dbo.[表名]:

  9. 【原创】微信小程序支付java后台案例(公众号支付同适用)(签名错误问题)

    前言 1.微信小程序支付官方接口文档:[点击查看微信开放平台api开发文档]2.遇到的坑:预支付统一下单签名结果返回[签名错误]失败,建议用官方[签名验证工具]检查签名是否存在问题.3.遇到的坑:签名 ...

  10. 白话--长短期记忆(LSTM)的几个步骤,附代码!

    1. 什么是LSTM 在你阅读这篇文章时候,你都是基于自己已经拥有的对先前所见词的理解来推断当前词的真实含义.我们不会将所有的东西都全部丢弃,然后用空白的大脑进行思考.我们的思想拥有持久性.LSTM就 ...