做一个logitic分类之鸢尾花数据集的分类
做一个logitic分类之鸢尾花数据集的分类
Iris 鸢尾花数据集是一个经典数据集,在统计学习和机器学习领域都经常被用作示例。数据集内包含 3 类共 150 条记录,每类各 50 个数据,每条记录都有 4 项特征:花萼长度、花萼宽度、花瓣长度、花瓣宽度,可以通过这4个特征预测鸢尾花卉属于(iris-setosa, iris-versicolour, iris-virginica)中的哪一品种。
首先我们来加载一下数据集。同时大概的展示下数据结构和数据摘要。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
data = pd.read_csv('./data/iris.csv')
print(data.head())
print(data.info())
print(data['Species'].unique())
   Unnamed: 0  Sepal.Length  Sepal.Width  Petal.Length  Petal.Width Species
0           1           5.1          3.5           1.4          0.2  setosa
1           2           4.9          3.0           1.4          0.2  setosa
2           3           4.7          3.2           1.3          0.2  setosa
3           4           4.6          3.1           1.5          0.2  setosa
4           5           5.0          3.6           1.4          0.2  setosa
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):
Unnamed: 0      150 non-null int64
Sepal.Length    150 non-null float64
Sepal.Width     150 non-null float64
Petal.Length    150 non-null float64
Petal.Width     150 non-null float64
Species         150 non-null object
dtypes: float64(4), int64(1), object(1)
memory usage: 7.2+ KB
None
['setosa' 'versicolor' 'virginica']
通过上述数据的简单摘要,我们可以得到鸢尾花一共有三类:
- setosa
- versicolor
- virginica
我们分别用0,1,2来表示['setosa' 'versicolor' 'virginica']
整理
首先,我们对数据集进行一个简单的整理。我们需要把分类替换成0,1,2
其次,我们把数据集分成两个分类,一个用来训练我们的logitic算法的参数,另外一个用来测试我们的训练的结果
以下是代码:
# 数值替换
data.loc[data['Species']=='setosa','Species']=0
data.loc[data['Species']=='versicolor','Species']=1
data.loc[data['Species']=='virginica','Species']=2
print(data)
     Unnamed: 0  Sepal.Length  Sepal.Width  Petal.Length  Petal.Width  Species
0             1           5.1          3.5           1.4          0.2        0
1             2           4.9          3.0           1.4          0.2        0
2             3           4.7          3.2           1.3          0.2        0
3             4           4.6          3.1           1.5          0.2        0
4             5           5.0          3.6           1.4          0.2        0
..          ...           ...          ...           ...          ...      ...
145         146           6.7          3.0           5.2          2.3        2
146         147           6.3          2.5           5.0          1.9        2
147         148           6.5          3.0           5.2          2.0        2
148         149           6.2          3.4           5.4          2.3        2
149         150           5.9          3.0           5.1          1.8        2
[150 rows x 6 columns]
#分割训练集和测试集
train_data = data.sample(frac=0.6,random_state=0,axis=0)
test_data = data[~data.index.isin(train_data.index)]
train_data = np.array(train_data)
test_data = np.array(test_data)
train_label = train_data[:,5:6].astype(int)
test_label = test_data[:,5:6].astype(int)
print(train_label[:1])
print(test_label[:1])
train_data = train_data[:,1:5]
test_data = test_data[:,1:5]
print(np.shape(train_data))
print(np.shape(train_label))
print(np.shape(test_data))
print(np.shape(test_label))
[[2]]
[[0]]
(90, 4)
(90, 1)
(60, 4)
(60, 1)
我们需要把label编程1ofN的样式
经过上述两步的操作,我们可以看到数据集被分成两个部分。我们接下来对数据进行logitic分类。
train_label_onhot = np.eye(3)[train_label]
test_label_onhot = np.eye(3)[test_label]
train_label_onhot = train_label_onhot.reshape((90,3))
test_label_onhot =  test_label_onhot.reshape((60,3))
print(train_label_onhot[:3])
[[0. 0. 1.]
 [0. 1. 0.]
 [1. 0. 0.]]
分类
思路
我选选择先易后难的方法来处理这个问题:
如果我们有两个分类0或者1的话,我们需要判断特征值X(N维)是否可以归为某个分类。我们的步骤如下:
- 初始化参数w(1,N)和b(1)
- 计算 \(z = \sum_{i=0}^{n}w*x + b\)
- 带入\(\sigma\)函数得到\(\hat{y}=\sigma(z)\)
现在有多个分类, 我们就需要使用one-to-many的方法去计算。简单的理解,在本题中,一共有3个分类。我们需要计算\(\hat{y}_1\)来表明这个东西是分类1或者不是分类1的概率 \(\hat{y}_2\)是不是分类2的概率,\(\hat{y}_3\)是不是分类3的概率。然后去比较这三个分类那个概率最大,就是哪个的概率。
比较属于哪个概率大的算法,我们用softmat。就是计算\(exp(\hat{y}_1)\),\(exp(\hat{y}_2)\),\(exp(\hat{y}_3)\),然后得到属于三个分类的概率分别是
- p1=\(\frac{exp(\hat{y}_1)}{\sum_{i=0}{3}(\hat{y}_i)}\)
- p1=\(\frac{exp(\hat{y}_2)}{\sum_{i=0}{3}(\hat{y}_i)}\)
- p1=\(\frac{exp(\hat{y}_3)}{\sum_{i=0}{3}(\hat{y}_i)}\)
我们根据上述思想去计算一条记录,代码如下:
def sigmoid(s):
     return 1. / (1 + np.exp(-s))
w = np.random.rand(4,3)
b = np.random.rand(3)
def get_result(w,b):
    z = np.matmul(train_data[0],w) +b
    y = sigmoid(z)
    return y
y = get_result(w,b)
print(y)
[0.99997447 0.99966436 0.99999301]
上述代码是我们只求一条记录的代码,下面我们给他用矩阵化修改为一次计算全部的训练集的\(\hat{y}\)
def get_result_all(data,w,b):
    z = np.matmul(data,w)+ b
    y = sigmoid(z)
    return y
y=get_result_all(train_data,w,b)
print(y[:10])
[[0.99997447 0.99966436 0.99999301]
 [0.99988776 0.99720719 0.9999609 ]
 [0.99947512 0.98810796 0.99962362]
 [0.99999389 0.99980632 0.999999  ]
 [0.9990065  0.98181945 0.99931113]
 [0.99999094 0.9998681  0.9999983 ]
 [0.99902719 0.98236513 0.99924728]
 [0.9999761  0.99933525 0.99999313]
 [0.99997542 0.99923594 0.99999312]
 [0.99993082 0.99841774 0.99997519]]
接下来我们要求得一个损失函数,来计算我们得到的参数和实际参数之间的偏差,关于分类的损失函数,请看这里
单个分类的损失函数如下:
\]
损失函数的导数求法如下
当 \(y_i=0\)时
w的导数为:
\]
化简得到
\]
b的导数为
\]
化简得到
\]
当\(y_i\)=1时
w的导数
\]
化简
\]
b的导数
\]
综合起来可以得到
\]
\]
我们只需要根据以下公式不停的调整w和b,就是机器学习的过程
\]
\]
下面我们来写下代码:
learning_rate = 0.0001
def eval(data,label, w,b):
    y = get_result_all(data,w,b)
    y = y.argmax(axis=1)
    y = np.eye(3)[y]
    count = np.shape(data)[0]
    acc = (count - np.power(y-label,2).sum()/2)/count
    return acc
def train(step,w,b):
    y = get_result_all(train_data,w,b)
    loss = -1*(train_label_onhot * np.log(y) +(1-train_label_onhot)*np.log(1-y)).sum()
    dw = np.matmul(np.transpose(train_data),y - train_label_onhot)
    db = (y - train_label_onhot).sum(axis=0)
    w = w - learning_rate * dw
    b = b - learning_rate * db
    return w, b,loss
loss_data = {'step':[],'loss':[]}
train_acc_data = {'step':[],'acc':[]}
test_acc_data={'step':[],'acc':[]}
for step in range(3000):
    w,b,loss = train(step,w,b)
    train_acc = eval(train_data,train_label_onhot,w,b)
    test_acc = eval(test_data,test_label_onhot,w,b)
    loss_data['step'].append(step)
    loss_data['loss'].append(loss)
    train_acc_data['step'].append(step)
    train_acc_data['acc'].append(train_acc)
    test_acc_data['step'].append(step)
    test_acc_data['acc'].append(test_acc)
plt.plot(loss_data['step'],loss_data['loss'])
plt.show()
plt.plot(train_acc_data['step'],train_acc_data['acc'],color='red')
plt.plot(test_acc_data['step'],test_acc_data['acc'],color='blue')
plt.show()
print(test_acc_data['acc'][-1])
 ![png]
![png]

0.9666666666666667
从上述运行结果中来看,达到了96.67%的预测准确度。还不错!
做一个logitic分类之鸢尾花数据集的分类的更多相关文章
- 实验一 使用sklearn的决策树实现iris鸢尾花数据集的分类
		使用sklearn的决策树实现iris鸢尾花数据集的分类 要求: 建立分类模型,至少包含4个剪枝参数:max_depth.min_samples_leaf .min_samples_split.max ... 
- Python实现鸢尾花数据集分类问题——基于skearn的NaiveBayes
		Python实现鸢尾花数据集分类问题——基于skearn的NaiveBayes 代码如下: # !/usr/bin/env python # encoding: utf-8 __author__ = ... 
- Python实现鸢尾花数据集分类问题——基于skearn的LogisticRegression
		Python实现鸢尾花数据集分类问题——基于skearn的LogisticRegression 一. 逻辑回归 逻辑回归(Logistic Regression)是用于处理因变量为分类变量的回归问题, ... 
- Python实现鸢尾花数据集分类问题——基于skearn的SVM
		Python实现鸢尾花数据集分类问题——基于skearn的SVM 代码如下: # !/usr/bin/env python # encoding: utf-8 __author__ = 'Xiaoli ... 
- Python实现鸢尾花数据集分类问题——使用LogisticRegression分类器
		. 逻辑回归 逻辑回归(Logistic Regression)是用于处理因变量为分类变量的回归问题,常见的是二分类或二项分布问题,也可以处理多分类问题,它实际上是属于一种分类方法. 概率p与因变量往 ... 
- [机器学习 ]PCA降维--两种实现 : SVD或EVD. 强力总结. 在鸢尾花数据集(iris)实做
		PCA降维--两种实现 : SVD或EVD. 强力总结. 在鸢尾花数据集(iris)实做 今天自己实现PCA,从网上看文章的时候,发现有的文章没有搞清楚把SVD(奇异值分解)实现和EVD(特征值分解) ... 
- 机器学习——logistic回归,鸢尾花数据集预测,数据可视化
		0.鸢尾花数据集 鸢尾花数据集作为入门经典数据集.Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理.Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集.数据集包含150个数 ... 
- ML.NET 示例:多类分类之鸢尾花分类
		写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ... 
- 探索sklearn | 鸢尾花数据集
		1 鸢尾花数据集背景 鸢尾花数据集是原则20世纪30年代的经典数据集.它是用统计进行分类的鼻祖. sklearn包不仅囊括很多机器学习的算法,也自带了许多经典的数据集,鸢尾花数据集就是其中之一. 导入 ... 
随机推荐
- 带你剖析WebGis的世界奥秘----点和线的世界
			前言 昨天写了好久的博文我没保存,今天在来想继续写居然没了,气死人啊这种情况你们见到过没,所以今天重新写,我还是切换到了HTML格式的书写上.废话不多说了,我们现在就进入主题,上周我仔细研究了WebG ... 
- ASP.NET Core on K8S深入学习(3-2)DaemonSet与Job
			本篇已加入<.NET Core on K8S学习实践系列文章索引>,可以点击查看更多容器化技术相关系列文章. 上一篇<3-1 Deployment>中介绍了Deployment ... 
- 从输入URL到浏览器显示页面发生了哪些事情---个人理解
			经典面试题:从输入URL到页面显示发生了哪些事情 以前一直都记不住,这次自己理解了一下 用自己的话总结了一次,不对的地方希望大佬给我指出来 1.主机通过DHCP协议获取客户端的IP地址.子网掩码和DN ... 
- 记几个 DOM 操作技巧
			使用 attributes 属性遍历元素特性 // 迭代元素的每一个特性,将它们构造成 name = value 的字符串形式 function outputAttributes (element) ... 
- 三步理解--门控循环单元(GRU),TensorFlow实现
			1. 什么是GRU 在循环神经⽹络中的梯度计算⽅法中,我们发现,当时间步数较⼤或者时间步较小时,循环神经⽹络的梯度较容易出现衰减或爆炸.虽然裁剪梯度可以应对梯度爆炸,但⽆法解决梯度衰减的问题.通常由于 ... 
- [Spring cloud 一步步实现广告系统] 20. 系统运行测试
			系统运行 经过长时间的编码实现,我们的主体模块已经大致完成,因为之前我们都是零散的对各个微服务自行测试,接下来,我们需要将所有的服务模块进行联调测试,Let's do it. 清除测试数据&测 ... 
- Go 语言基础——go语言如何优雅的进行测试
			我们可以为Go程序编写三类测试,即:功能测试(test).基准测试(benchmark),也称性能测试(example) #### 测试文件的约定 1. 测试文件的主名称应该以被测试文件主名称为先导, ... 
- 【雕爷学编程】Arduino动手做(16)---数字触摸传感器
			37款传感器和模块的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止37种的.鉴于本人手头积累了一些传感器与模块,依照实践出真知(动手试试)的理念,以学习和交流为目的,这里准备 ... 
- Java中synchronized关键字你知道多少
			1.什么是synchronized 我们将其理解为同步锁,可以实现共享资源的同步访问,解决线程并发的安全问题.synchronize翻译成中文:同步,使同步.synchronized:已同步. 1.1 ... 
- 装饰器修复技术@wraps
			@wrap修复技术 首先我先说一下wrap的效果 如果没使用@wraps,当A调用了装饰器B的话,即使A.name,返回的会是装饰器B的函数名称,而不是A的函数名称如果使用了@wraps,当A调用了装 ... 
