既然已经给std了,直接扔代码啦。代码注释还是不错哒。

因为我也有点懵,不明白的或有不同见解的一定要在评论区喷我啊!

 #include<bits/stdc++.h>
using namespace std;
//首先题意可能还有人理解错了。题目的意思是你要根据对手分别出了几个石头几个剪刀来决策
//而并不是一场战斗结束后你就能知道对方具体是谁从而直接推断剩下的人
#define g f[i][j][k]//压行,和那个题解里的含义不一样,但没有影响
#define d(x,k) for(int x=k;x>=0;--x)//压行,字少
int n;double x[][],f[][][][],ans,c[][];
//f数组的含义:当最后一维为1~3时表示第i+j+k+1个人在前面的人出了i个1,j个2,k个3的情况下出1~3的概率
//当最后一维为0时表示前i+j+k个人出了i个1,j个2,k个3的概率,即那个题解里的g数组
int main(){
scanf("%d",&n); f[][][][]=;//初始化
for(int i=;i<=n;++i) scanf("%lf%lf%lf",&x[i][],&x[i][],&x[i][]),
x[i][]/=,x[i][]/=,x[i][]/=;
//读入概率,注意顺序是132。把石头剪刀步分别抽象为123,故1胜2,2胜3,3胜1
for(int i=;i<=;++i) c[i][]=;
for(int i=;i<=;++i) for(int j=;j<=i;++j) c[i][j]+=c[i-][j-]+c[i-][j];
//杨辉三角。注意:要用到50!级别的而没有取模,所以要开long long或double
for(int s=;s<=n;++s) d(i,s) d(j,s-i) d(k,s-i-j) d(u,(i+j+k==s?:)){//有点像个背包
//你可以把s单独再开一维的数组来表示目前考虑到第几个人,更好理解但貌似会炸内存
//u为1~3时,分别枚举第几个人,前面的人出过几个1,2,3,这个人要出u
//注意u的枚举是当i+j+k!=s时才更新对方下一次出123的概率,否则只更新到达某状态的概率
//u为0时,计算到达这个状态的总概率(即题解中的g数组)
if(i)g[u]+=f[i-][j][k][u]*x[s][];//这个人s出了1,累加概率
//当u=0时,f[i][j][k][0]由f[i-1][j][k][0]转移而来(u=0并不考虑下一个人会出什么)
//在原状态出一个1即为新状态,后者的概率为x[s][1]。计算g数组就不必考虑其他f值的影响
//因为根据含义就有f[i][j][k][0]=f[i][j][k][1]+f[i][j][k][2]+f[i][j][k][3]
//当u>0时就不太一样了,计算的是接下来出1的概率
//它由上一轮对方出1的概率乘对方真的出了1的概率累加而来,此时i+j+k!=s
//因为你把这玩意当成一个背包不断往里面放对手来更新其概率
//意思大概就是“目前的状态已经是那样了而且下一轮你遇到了s”,然后s对你的概率产生的贡献
//所以就是你走到原状态的概率,乘上s出1的概率,就是s对目前状态的概率贡献
//所以i+j+k==s时不能枚举到3,因为相当于你的原状态里面已经有s个人了,可是你现在刚刚开始考虑第s个人啊
if(j)g[u]+=f[i][j-][k][u]*x[s][];//出2,同上
if(k)g[u]+=f[i][j][k-][u]*x[s][];//出3,同
if(u)g[u]+=f[i][j][k][-]*x[s][u];//不要管这个1-1,它只是为了在等宽字体下的整齐
//这个就是弥补了上面的缺陷。本层转移。不管目前的状态是什么,反正第s个人就是出u了
//与上面的并不重复。一个是在说s对以前的状态的贡献,这个是在说s对当前状态的贡献
}
d(i,n-) d(j,n--i) d(k,n-i-j-)//i+j+k不要枚举到n,因为已经进行过n轮后下一次再出什么已经不重要不记分了
ans+=max(max(g[]+*g[],g[]+*g[]),g[]+*g[])/c[n][i+j+k]/(n-i-j-k);
//在每一种状态下(即确定对手已经出了i个1,j个2,k个3)时你都有唯一确定的最优决策来进行下一轮
//每一次决策时都会累加分数,3种决策分别对应出1,2,3.g[1]即为与1打平,3*g[2]即为战胜2
//你所说的最优决策就是根据已有信息(每个对手出了什么),通过猜测对手下一步会出什么来权衡3中决策
//至于为什么用到了组合数:因为你所算的概率只是到达这一步的概率,但是你是从n个人里随便选出了c[n][i+j+k]个人
//然而其实在同一场游戏中对于同样的i+j+k你只会选1次,在计算的时候你把概率累加在一起了,现在要求一个平均值
//再除一个(n-i-j-k)的原因也差不多,因为你是要从剩下的(n-i-j-k)个人里选出一个去挑战
//这一步的概率是1/(n-i-j-k),然而你在上面5层循环的时候并没有考虑,所以在这里统一除去
printf("%.12lf\n",ans);//给的std里是用%.12f输出double的,真是惊奇
}//把注释全删掉你就会发现这个代码只有21行811B

石头剪刀步(rps):dp,概率&期望的更多相关文章

  1. [LnOI2019]加特林轮盘赌(DP,概率期望)

    [LnOI2019]加特林轮盘赌(DP,概率期望) 题目链接 题解: 首先特判掉\(p=0/1\)的情况... 先考虑如果\(k=1\)怎么做到\(n^2\)的时间复杂度 设\(f[i]\)表示有\( ...

  2. Codeforces1097D. Makoto and a Blackboard(数论+dp+概率期望)

    题目链接:传送门 题目大意: 给出一个整数n写在黑板上,每次操作会将黑板上的数(初始值为n)等概率随机替换成它的因子. 问k次操作之后,留在黑板上的数的期望. 要求结果对109+7取模,若结果不是整数 ...

  3. hdu-5781 ATM Mechine(dp+概率期望)

    题目链接: ATM Mechine Time Limit: 6000/3000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Other ...

  4. BZOJ3566:[SHOI2014]概率充电器(树形DP,概率期望)

    Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器, ...

  5. hdu-5816 Hearthstone(状压dp+概率期望)

    题目链接: Hearthstone Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Other ...

  6. BZOJ4008:[HNOI2015]亚瑟王(DP,概率期望)

    Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个 ...

  7. HDU3853-LOOPS(概率DP求期望)

    LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others) Total Su ...

  8. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  9. 【POJ 2096】Collecting Bugs 概率期望dp

    题意 有s个系统,n种bug,小明每天找出一个bug,可能是任意一个系统的,可能是任意一种bug,即是某一系统的bug概率是1/s,是某一种bug概率是1/n. 求他找到s个系统的bug,n种bug, ...

随机推荐

  1. IDEA 学习笔记之 1.5已经过时问题

    1.5已经过时问题: apache-maven-3.5.0\conf\settings.xml添加: <profile> <id>jdk-1.8</id> < ...

  2. k阶斐波那契数列fibonacci第n项求值

    已知K阶斐波那契数列定义为:f0 = 0,  f1 = 0, … , fk-2 = 0, fk-1 = 1;fn = fn-1 + fn-2 + … + fn-k , n = k , k + 1, … ...

  3. 定期从Docker上部署的MySQL备份数据

    前段时间公司停电,正巧赶上周一领导要开会要过一遍项目,然而项目所依赖的MySQL数据库是直接部署在宿主机,且因为各人部署方式不同的原因,花了很久才在开会前启动起来.于是开完会后,我第一件事就是把原先依 ...

  4. 【Java】用Freemarker完美导出word文档(带图片)

    Java  用Freemarker完美导出word文档(带图片) 前言 最近在项目中,因客户要求,将页面内容(如合同协议)导出成word,在网上翻了好多,感觉太乱了,不过最后还是较好解决了这个问题. ...

  5. Spring 源码阅读 二

    程序入口: 接着上一篇博客中看完了在AnnotationConfigApplicationContext的构造函数中的register(annotatedClasses);将我们传递进来的主配置类添加 ...

  6. C-01 手写数字识别

    目录 手写数字识别应用程序 一.导入模块 二.图像转向量 三.训练并测试模型 四.模型转应用程序 4.1 展示图片 4.2 处理图片 4.3 预测图片 更新.更全的<机器学习>的更新网站, ...

  7. 分库分表(6)--- SpringBoot+ShardingSphere实现分表+ 读写分离

    分库分表(6)--- ShardingSphere实现分表+ 读写分离 有关分库分表前面写了五篇博客: 1.分库分表(1) --- 理论 2.分库分表(2) --- ShardingSphere(理论 ...

  8. 货物运输 51Nod - 1671

    公元2222年,l国发生了一场战争. 小Y负责领导工人运输物资. 其中有m种物资的运输方案,每种运输方案形如li,ri.表示存在一种货物从li运到ri. 这里有n个城市,第i个城市与第i+1个城市相连 ...

  9. JAVA中JDK开发环搭的搭建,jvm jre

    1.JDK的下载与安装: www.oracle.com 安装需要注意的是:不能把jdk安装到有空格或中文的文件夹中,建议大家在某个目录下创建一个JavaWeb的文件夹,然后把所学的java所有内容(后 ...

  10. metasploit(MSF)渗透平台命令大全

    转自互联网 记录以备后用 show exploits 列出metasploit框架中的所有渗透攻击模块. show payloads 列出metasploit框架中的所有攻击载荷. show auxi ...