既然已经给std了,直接扔代码啦。代码注释还是不错哒。

因为我也有点懵,不明白的或有不同见解的一定要在评论区喷我啊!

 #include<bits/stdc++.h>
using namespace std;
//首先题意可能还有人理解错了。题目的意思是你要根据对手分别出了几个石头几个剪刀来决策
//而并不是一场战斗结束后你就能知道对方具体是谁从而直接推断剩下的人
#define g f[i][j][k]//压行,和那个题解里的含义不一样,但没有影响
#define d(x,k) for(int x=k;x>=0;--x)//压行,字少
int n;double x[][],f[][][][],ans,c[][];
//f数组的含义:当最后一维为1~3时表示第i+j+k+1个人在前面的人出了i个1,j个2,k个3的情况下出1~3的概率
//当最后一维为0时表示前i+j+k个人出了i个1,j个2,k个3的概率,即那个题解里的g数组
int main(){
scanf("%d",&n); f[][][][]=;//初始化
for(int i=;i<=n;++i) scanf("%lf%lf%lf",&x[i][],&x[i][],&x[i][]),
x[i][]/=,x[i][]/=,x[i][]/=;
//读入概率,注意顺序是132。把石头剪刀步分别抽象为123,故1胜2,2胜3,3胜1
for(int i=;i<=;++i) c[i][]=;
for(int i=;i<=;++i) for(int j=;j<=i;++j) c[i][j]+=c[i-][j-]+c[i-][j];
//杨辉三角。注意:要用到50!级别的而没有取模,所以要开long long或double
for(int s=;s<=n;++s) d(i,s) d(j,s-i) d(k,s-i-j) d(u,(i+j+k==s?:)){//有点像个背包
//你可以把s单独再开一维的数组来表示目前考虑到第几个人,更好理解但貌似会炸内存
//u为1~3时,分别枚举第几个人,前面的人出过几个1,2,3,这个人要出u
//注意u的枚举是当i+j+k!=s时才更新对方下一次出123的概率,否则只更新到达某状态的概率
//u为0时,计算到达这个状态的总概率(即题解中的g数组)
if(i)g[u]+=f[i-][j][k][u]*x[s][];//这个人s出了1,累加概率
//当u=0时,f[i][j][k][0]由f[i-1][j][k][0]转移而来(u=0并不考虑下一个人会出什么)
//在原状态出一个1即为新状态,后者的概率为x[s][1]。计算g数组就不必考虑其他f值的影响
//因为根据含义就有f[i][j][k][0]=f[i][j][k][1]+f[i][j][k][2]+f[i][j][k][3]
//当u>0时就不太一样了,计算的是接下来出1的概率
//它由上一轮对方出1的概率乘对方真的出了1的概率累加而来,此时i+j+k!=s
//因为你把这玩意当成一个背包不断往里面放对手来更新其概率
//意思大概就是“目前的状态已经是那样了而且下一轮你遇到了s”,然后s对你的概率产生的贡献
//所以就是你走到原状态的概率,乘上s出1的概率,就是s对目前状态的概率贡献
//所以i+j+k==s时不能枚举到3,因为相当于你的原状态里面已经有s个人了,可是你现在刚刚开始考虑第s个人啊
if(j)g[u]+=f[i][j-][k][u]*x[s][];//出2,同上
if(k)g[u]+=f[i][j][k-][u]*x[s][];//出3,同
if(u)g[u]+=f[i][j][k][-]*x[s][u];//不要管这个1-1,它只是为了在等宽字体下的整齐
//这个就是弥补了上面的缺陷。本层转移。不管目前的状态是什么,反正第s个人就是出u了
//与上面的并不重复。一个是在说s对以前的状态的贡献,这个是在说s对当前状态的贡献
}
d(i,n-) d(j,n--i) d(k,n-i-j-)//i+j+k不要枚举到n,因为已经进行过n轮后下一次再出什么已经不重要不记分了
ans+=max(max(g[]+*g[],g[]+*g[]),g[]+*g[])/c[n][i+j+k]/(n-i-j-k);
//在每一种状态下(即确定对手已经出了i个1,j个2,k个3)时你都有唯一确定的最优决策来进行下一轮
//每一次决策时都会累加分数,3种决策分别对应出1,2,3.g[1]即为与1打平,3*g[2]即为战胜2
//你所说的最优决策就是根据已有信息(每个对手出了什么),通过猜测对手下一步会出什么来权衡3中决策
//至于为什么用到了组合数:因为你所算的概率只是到达这一步的概率,但是你是从n个人里随便选出了c[n][i+j+k]个人
//然而其实在同一场游戏中对于同样的i+j+k你只会选1次,在计算的时候你把概率累加在一起了,现在要求一个平均值
//再除一个(n-i-j-k)的原因也差不多,因为你是要从剩下的(n-i-j-k)个人里选出一个去挑战
//这一步的概率是1/(n-i-j-k),然而你在上面5层循环的时候并没有考虑,所以在这里统一除去
printf("%.12lf\n",ans);//给的std里是用%.12f输出double的,真是惊奇
}//把注释全删掉你就会发现这个代码只有21行811B

石头剪刀步(rps):dp,概率&期望的更多相关文章

  1. [LnOI2019]加特林轮盘赌(DP,概率期望)

    [LnOI2019]加特林轮盘赌(DP,概率期望) 题目链接 题解: 首先特判掉\(p=0/1\)的情况... 先考虑如果\(k=1\)怎么做到\(n^2\)的时间复杂度 设\(f[i]\)表示有\( ...

  2. Codeforces1097D. Makoto and a Blackboard(数论+dp+概率期望)

    题目链接:传送门 题目大意: 给出一个整数n写在黑板上,每次操作会将黑板上的数(初始值为n)等概率随机替换成它的因子. 问k次操作之后,留在黑板上的数的期望. 要求结果对109+7取模,若结果不是整数 ...

  3. hdu-5781 ATM Mechine(dp+概率期望)

    题目链接: ATM Mechine Time Limit: 6000/3000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Other ...

  4. BZOJ3566:[SHOI2014]概率充电器(树形DP,概率期望)

    Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器, ...

  5. hdu-5816 Hearthstone(状压dp+概率期望)

    题目链接: Hearthstone Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Other ...

  6. BZOJ4008:[HNOI2015]亚瑟王(DP,概率期望)

    Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个 ...

  7. HDU3853-LOOPS(概率DP求期望)

    LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others) Total Su ...

  8. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  9. 【POJ 2096】Collecting Bugs 概率期望dp

    题意 有s个系统,n种bug,小明每天找出一个bug,可能是任意一个系统的,可能是任意一种bug,即是某一系统的bug概率是1/s,是某一种bug概率是1/n. 求他找到s个系统的bug,n种bug, ...

随机推荐

  1. Egret资源跨域问题

    在服务器上配置了允许跨域还不够,还需要在引擎配置允许跨域,不然texture无法在webgl上下文中渲染 会报一个类似于The cross-origin image at 的错误, 只需要在egret ...

  2. Java读源码之Object

    前言 JDK版本: 1.8 最近想看看jdk源码提高下技术深度(比较闲),万物皆对象,虽然Object大多native方法但还是很重要的. 源码 package java.lang; /** * Ja ...

  3. centos8安装图解

    CentOS 8 的新特性 DNF 成为了默认的软件包管理器,同时 yum 仍然是可用的 使用网络管理器(nmcli 和 nmtui)进行网络配置,移除了网络脚本 使用 Podman 进行容器管理 引 ...

  4. python编程基础之六

    运算符和表达式 +,-,*,/,     加减乘除 %, 模运算 **,  幂运算 //  整除 运算优先级方面:** >正负号(+,-)>//,%>*,/>+,- 模运算有一 ...

  5. Jackson日期转换少一天

    1. 案例 添加一个学生,前端把生日传给后端,后端使用Datel类型接收到后,然后调用其它服务进行保存入库. 与其它服务交互时,使用的是JSON格式,出现日期少一天. @Data @AllArgsCo ...

  6. Python3_基础

    目录 数据类型 变量 数据类型的转换 算术操作符 输入 字符串常用方法 数据类型 我们先来看看三种常见的数据类型 字符串 str 在Python中,字符串一般都用引号引起来,不管是用单引号还是双引号都 ...

  7. 常用windows命令

    目录 本教程概述 用到的工具 标签 简介 1.cmd的一些规则 2.cd切换目录命令 3.dir显示目录命令 4.type显示文本内容 5.del 删除文件 6.查看IP地址 7.net 命令 8.n ...

  8. PHP array_reverse

    1.函数的作用:将数组中的元素顺序反转 2.函数的参数: @params array $array 需要反转顺序的数组 @params $preversed_key  数值索引是否保持不变,非数值索引 ...

  9. [Luogu2967] 视频游戏的麻烦Video Game Troubles

      农夫约翰的奶牛们游戏成瘾!本来约翰是想要按照调教兽的做法拿她们去电击戒瘾的,可是 后来他发现奶牛们玩游戏之后比原先产更多的奶.很明显,这是因为满足的牛会产更多的奶. 但是,奶牛们在哪个才是最好的游 ...

  10. libevent::日志

    LibEvent 能记录内部的错误和警告日志,如果编译进日志支持功能,也会记录调试信息.默认情况下这些消息都是输出 到 stderr,你也可以通过提供自己的日志函数的方法来覆盖这种行为. 为了覆盖 L ...