1.自定义层

对于简单、无状态的自定义操作,你也许可以通过 layers.core.Lambda 层来实现。但是对于那些包含了可训练权重的自定义层,你应该自己实现这种层。

这是一个 Keras2.0 中,Keras 层的骨架(如果你用的是旧的版本,请更新到新版)。你只需要实现三个方法即可:

  • build(input_shape): 这是你定义权重的地方。这个方法必须设 self.built = True,可以通过调用 super([Layer], self).build() 完成。
  • call(x): 这里是编写层的功能逻辑的地方。你只需要关注传入 call 的第一个参数:输入张量,除非你希望你的层支持masking。
  • compute_output_shape(input_shape): 如果你的层更改了输入张量的形状,你应该在这里定义形状变化的逻辑,这让Keras能够自动推断各层的形状。
from keras import backend as K
from keras.engine.topology import Layer class MyLayer(Layer): def __init__(self, output_dim, **kwargs):
self.output_dim = output_dim
super(MyLayer, self).__init__(**kwargs) def build(self, input_shape):
# 为该层创建一个可训练的权重
self.kernel = self.add_weight(name='kernel',
shape=(input_shape[1], self.output_dim),
initializer='uniform',
trainable=True)
super(MyLayer, self).build(input_shape) # 一定要在最后调用它 def call(self, x):
return K.dot(x, self.kernel) def compute_output_shape(self, input_shape):
return (input_shape[0], self.output_dim)

还可以定义具有多个输入张量和多个输出张量的 Keras 层。 为此,你应该假设方法 build(input_shape)call(x) 和 compute_output_shape(input_shape) 的输入输出都是列表。 这里是一个例子,与上面那个相似:

from keras import backend as K
from keras.engine.topology import Layer class MyLayer(Layer): def __init__(self, output_dim, **kwargs):
self.output_dim = output_dim
super(MyLayer, self).__init__(**kwargs) def build(self, input_shape):
assert isinstance(input_shape, list)
# 为该层创建一个可训练的权重
self.kernel = self.add_weight(name='kernel',
shape=(input_shape[0][1], self.output_dim),
initializer='uniform',
trainable=True)
super(MyLayer, self).build(input_shape) # 一定要在最后调用它 def call(self, x):
assert isinstance(x, list)
a, b = x
return [K.dot(a, self.kernel) + b, K.mean(b, axis=-1)] def compute_output_shape(self, input_shape):
assert isinstance(input_shape, list)
shape_a, shape_b = input_shape
return [(shape_a[0], self.output_dim), shape_b[:-1]]

已有的 Keras 层就是实现任何层的很好例子。不要犹豫阅读源码!

2.自定义评价函数

自定义评价函数应该在编译的时候(compile)传递进去。该函数需要以 (y_true, y_pred) 作为输入参数,并返回一个张量作为输出结果。

import keras.backend as K

def mean_pred(y_true, y_pred):
return K.mean(y_pred) model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy', mean_pred])

3.自定义损失函数

自定义损失函数也应该在编译的时候(compile)传递进去。该函数需要以 (y_true, y_pred) 作为输入参数,并返回一个张量作为输出结果。

import keras.backend as K

def my_loss(y_true, y_pred):
return K.mean(K.squre(y_pred-y_true))#以平方差举例 model.compile(optimizer='rmsprop',
loss=my_loss,
metrics=['accuracy'])

4.处理已保存模型中的自定义层(或其他自定义对象)

如果要加载的模型包含自定义层或其他自定义类或函数,则可以通过 custom_objects 参数将它们传递给加载机制:

from keras.models import load_model
# 假设你的模型包含一个 AttentionLayer 类的实例
model = load_model('my_model.h5', custom_objects={'AttentionLayer': AttentionLayer})

或者,你可以使用 自定义对象作用域

from keras.utils import CustomObjectScope

with CustomObjectScope({'AttentionLayer': AttentionLayer}):
model = load_model('my_model.h5')

『开发技巧』Keras自定义对象(层、评价函数与损失)的更多相关文章

  1. 『开发技巧』Python音频操作工具PyAudio上手教程

    『开发技巧』Python音频操作工具PyAudio上手教程 ​ 0.引子 当需要使用Python处理音频数据时,使用python读取与播放声音必不可少,下面介绍一个好用的处理音频PyAudio工具包. ...

  2. [开发技巧]·TensorFlow&Keras GPU使用技巧

    [开发技巧]·TensorFlow&Keras GPU使用技巧 ​ 1.问题描述 在使用TensorFlow&Keras通过GPU进行加速训练时,有时在训练一个任务的时候需要去测试结果 ...

  3. 『开发技术』GPU训练加速原理(附KerasGPU训练技巧)

    0.深入理解GPU训练加速原理 我们都知道用GPU可以加速神经神经网络训练(相较于CPU),具体的速度对比可以参看我之前写的速度对比博文: [深度应用]·主流深度学习硬件速度对比(CPU,GPU,TP ...

  4. 『电脑技巧』破解Win7/Win8登录密码

    Pic via baidu 0x 00 破解思路 用户的明文密码经过单向Hash加密生成Hash散列,Hash散列又被加密存放在系统盘\Windiws\System32\config文件下 要获得明文 ...

  5. 『电脑技巧』浅谈Win7的文件共享设置

    随着移动存储设备的普及,很少有小伙伴喜欢使用局域网“文件共享”这一捷径了 而且自从XP之后,Windows系列主机共享设置貌似比较麻烦 虽然事实并不是看上去那样(Win7也很Easy的说 = =) 现 ...

  6. 『开发技术』Docker开发教程(一)安装与测试(Windows 家庭版)

    0.前言 针对其他系统和版本,Docker都很容易安装,可以参考官方教程:https://docs.docker.com/docker-hub/ 由于Windows10家庭版无法安装docker,因此 ...

  7. 『开发技术』Windows极简安装使用face_recognition

    face_recognition是一个强大.简单.易上手的人脸识别开源项目,并且配备了完整的开发文档和应用案例,特别是兼容树莓派系统.此项目是世界上最简洁的人脸识别库,你可以使用Python和命令行工 ...

  8. 『开发技术』Ubuntu与Windows如何查看CPU&GPU&内存占用量

    0 序·简介 在使用Ubuntu或者Windows执行一些复杂数据运算时,需要关注下CPU.GPU以及内存占用量,如果数据运算超出了负荷,会产生难以预测的错误.本文将演示如何用简单地方式,实时监控Ub ...

  9. Keras处理已保存模型中的自定义层(或其他自定义对象)

    如果要加载的模型包含自定义层或其他自定义类或函数,则可以通过 custom_objects 参数将它们传递给加载机制: from keras.models import load_model # 假设 ...

随机推荐

  1. Android Camera2 拍照(四)——对焦模式

    原文:Android Camera2 拍照(四)--对焦模式 本篇将重点介绍使用Camera2 API进行手动对焦的设置,以及在手动对焦与自动对焦模式之间切换. 一.手动对焦响应事件 首先我们要实现点 ...

  2. ApplicationCommands用于表示应用程序程序员经常遇到的常见命令,类似于ctrl+c

    在WPF中,许多控件都自动集成了固有的命令集.比如文本框TextBox就提供了复制(Copy),粘贴(Paste),裁切(Cut),撤消(Undo)和重做(Redo)命令等. WPF提供常用应用程序所 ...

  3. WPF中的多进程(Threading)处理实例(一)

    原文:WPF中的多进程(Threading)处理实例(一) 说明:希望通过揣摩这些案例,能进一步了解进程的工作原理. 1.方法一描述的是在同一窗口中,在计算素数的同时而不影响Canvas的工作. 方法 ...

  4. PHP 一致性Hash

    一致性HASH 好久没有写文章了,最近忙着公司的事情,也一拖再拖.这篇一致性hash是很久之前就有的一篇算法,记录一下,这周写个基于该算法的Redis中间件. HASH算法的精髓就在于打散原本杂乱无序 ...

  5. Win8Metro(C#)数字图像处理--2.13Roberts边缘检测

    原文:Win8Metro(C#)数字图像处理--2.13Roberts边缘检测  [函数名称] 图像Roberts边缘检测函数RobertEdgeProcess(WriteableBitmap s ...

  6. C#基础加强篇---委托、Lamada表达式和事件(中)

    2.Lamada表达式     C#共有两种匿名函数:匿名方法和Lamada表达式.在2.0之前的C#版本中,创建委托的唯一方法是使用命名方法.C#2.0中引入了匿名方法,匿名方法就是没有名称的方法. ...

  7. 零元学Expression Blend 4 - Chapter 15 用实例了解互动控制项「Button」I

    原文:零元学Expression Blend 4 - Chapter 15 用实例了解互动控制项「Button」I 本章将教大家如何更改Button的预设Template,以及如何在Button内设置 ...

  8. TThread类详解

    TThread是一个抽象类,可以创建几个独立的线程.类关系 TObject在一个多线程的应用程序中创建一个TThread的后子类代表一个线程.每一新子类的TThread对象的实例是一个新的线程.从TT ...

  9. 【转】子弹短信内部技术分享:Redis

    原理 Redis 是一个内存型「数据库」,除存储之外,它还有许多强大的命令,使之远远超出了数据库的定义,所以官方称之为「data structure store」,数据结构存储系统. 通过 Redis ...

  10. 零基础配置Hadoop集群——Ambari安装及配置详解

    1. 准备工作 1.1. 系统环境 主机列表: IP地址 HostName 描述 192.168.610.153 ambari.server Ambari服务器 192.168.10.152  had ...