题目传送门

分析:

这道题很神仙,我们给出低配版解法和高配版解法2333

低配版:

首先知道这样一个公式。。。(证明去高配版)

当一个字符串S其中S [ 1 , i ] = S [ n - i + 1 , n ]时,则称S [ 1 , i ]为S的一个border

Ans[n]=sigma( S [ 1, i ]为S的border) m ^ i

嗯。。。

有了这个之后,我们就可以kmp或者hash求解了

但是,hash只能处理取到S的答案,而kmp可以做到处理出所有S前缀的答案

这里就用kmp(相信hash很简单(大雾))

那么我们设 f [ i ] 为递推到第 i 位的答案

我们先处理出fail数组

那么S[ 1 , i ]的border的集合就是S[ 1 , i ]本身加上S[ 1 , fail [ i ] ]的border集合

所以得出递推式

f [ i ] = f [ fail [ i ] ] + m ^ i

算到 n 就是答案了

高配版:

首先我们要知道生成函数的表达式:

F(i) = sigma( i = 0...+∞) Ai * x ^ i

我们从生成函数定义概率生成函数,其中代价为 i 的事件发生的概率为 Ai:

那么我们可以知道:

F(1) = 1

相当于x取1时,F(1)代表的是所有情况的概率和,其值为1是显然正确的,就是事件本身

然后我们考虑期望代价E(x)

E(x) = sigma( i = 0...+∞)Ai * i

因为当 i 为0时不做贡献,所以 i 可以从1开始

接下来有一个有趣的事情,我们把F(x)求导

F'(x)=sigma( i =1...+∞)Ai * i * x ^ ( i - 1 )

我们再取F'(1) = sigma( i = 1...+∞)Ai * i

与E(x)做一下比较,我们惊奇地发现:

E(x) = F'(1)

这是巧合吗?还是冥冥之中的必然?

这也说明了,概率和期望是有必然的联系的

于是我们进入正题

设函数F(x)表示结束时长度为 i 的概率,G(x)表示长度到了 i 还没有结束的概率

那么我们得到这个等式:

F(x) + G(x) = 1 + G(x) * x

分为每一位考虑,其实就是整个递推的过程,你在i - 1位没有结束的概率,就是你在 i 位结束和在 i 位没结束的概率和

这个式子记为1式

然后我们考虑求解。。。

我们往G(x)上强行加 (1/m x)^n 这个串一定会结束,然而这个串可能提前结束,因为之前的串里可能有S的border

我们枚举border的长度

首先定义ai=0或1 代表S[ 1 , i ]是否为S的border

于是可以得到这个式子。。。

G(x) * ( 1/m * x) ^ n = sigma(i=1...n) ai * F(x) * (1/m * x) ^ ( n - i )

不好说这个式子,但感(hu)性(luan)分析一下挺正确的2333

这只Darknesses笨笨的,讲不清楚

把这个式子记为2式

然后我们大♂力推式子

首先对1式求导

F'(x) + G'(x) = G(x) + G'(x) * x

要求F'(1)诶。。。

直接取吧2333

然后惊奇地发现

F'(1)=G(1)

第二个再取1试试

G(1) * (1/m) ^ n = sigma(i=1...n) ai * F(1) * (1/m) ^ ( n - i )

因为F(1)=1,我们再把(1/m) ^ n除过去

G(1)=sigma(i=1...n) ai * m ^ i

所以Ans[n]=E(x)=F'(1)=G(1)=sigma( S[ 1 , i ]为S的border ) m^i

得证了。。。

呵呵呵。。。

生成函数真神仙。。。

数学太菜了2333

#include<cstdio>
#include<algorithm>
#include<vector>
#include<cmath>
#include<cstring>
#include<string>
#include<map>
#include<queue>
#include<iostream> #define maxn 1000005
#define MOD 1000000007 using namespace std; inline int getint()
{
int num=,flag=;char c;
while((c=getchar())<''||c>'')if(c=='-')flag=-;
while(c>=''&&c<='')num=num*+c-,c=getchar();
return num*flag;
} int n,m;
long long a[maxn],pw[maxn];
long long ans;
long long fail[maxn],f[maxn]; int main()
{
m=getint(),n=getint(),f[]=;
for(int i=;i<=n;i++)a[i]=getint(),f[i]=f[i-]*m%MOD;
fail[]=-;
for(int i=;i<=n;i++)
{
for(int j=fail[i-];j>=;j=fail[j])
if(a[i]==a[j+]){fail[i]=j+,(f[i]+=f[j+])%=MOD;break;}
}
for(int i=;i<=n;i++)printf("%lld\n",f[i]);
}

代码不能直接AC哦,它输出的式S所有前缀的答案2333

代码短,证明还真长呢2333

BZOJ 1152 歌唱王国的更多相关文章

  1. 【BZOJ1152】歌唱王国(生成函数,KMP)

    [BZOJ1152]歌唱王国(生成函数,KMP) 题面 BZOJ 洛谷 题解 根据\(YMD\)论文来的QwQ. 首先大家都知道普通型生成函数是\(\displaystyle \sum_{i=0}^{ ...

  2. [CTSC2006]歌唱王国

    [CTSC2006]歌唱王国 Tags:题解 题意 链接:在空串后不断随机添加字符,直到出现串\(S_i\)为止.求最终串的期望长度.\(\sum |S_i|\le 5*10^6\) 题解 以下内容来 ...

  3. bzoj 2850 巧克力王国

    bzoj 2850 巧克力王国 钱限题.题面可以看这里. 显然 \(x\) \(y\) 可以看成坐标平面上的两维,蛋糕可以在坐标平面上表示为 \((x,y)\) ,权值为 \(h\) .用 \(kd- ...

  4. bzoi1152 [CTSC2006]歌唱王国Singleland

    [CTSC2006]歌唱王国Singleland Time Limit: 30 Sec Memory Limit: 162 MB Description 在歌唱王国,所有人的名字都是一个非空的仅包含整 ...

  5. 【题解】歌唱王国(概率生成函数+KMP)+伦讲的求方差

    [题解]歌唱王国(概率生成函数+KMP)+伦讲的求方差 生成函数的本质是什么呀!为什么和It-st一样神 设\(f_i\)表示填了\(i\)个时候停下来的概率,\(g_i\)是填了\(i\)个的时候不 ...

  6. 【BZOJ】1152: [CTSC2006]歌唱王国Singleland

    题解 读错题了,是最后留下一个牛人首长歌颂他,和其他人没有关系,t就相当于数据组数 结论题,具体可看 https://www.zhihu.com/question/59895916/answer/19 ...

  7. BZOJ 2850: 巧克力王国 KDtree + 估价函数

    Code: #include<bits/stdc++.h> #define maxn 100000 #define inf 1000000008 #define mid ((l+r)> ...

  8. 解题:CTSC 2006 歌唱王国

    题面 概率生成函数 对于菜鸡博主来说好难啊 其一般形式为$F(x)=\sum\limits_{i=0}^∞[x==i]x_i$,第i项的系数表示离散变量x取值为i的概率 一般的两个性质:$F(1)=1 ...

  9. 洛谷P4548 [CTSC2006]歌唱王国(概率生成函数)

    题面 传送门 给定一个长度为\(L\)的序列\(A\).然后每次掷一个标有\(1\)到\(m\)的公平骰子并将其上的数字加入到初始为空的序列\(B\)的末尾,如果序列B中已经出现了给定序列\(A\), ...

随机推荐

  1. Linux 内核提交和控制一个 urb

    当驱动有数据发送到 USB 设备(如同在驱动的 write 函数中发生的), 一个 urb 必须被 分配来传送数据到设备. urb = usb_alloc_urb(0, GFP_KERNEL); if ...

  2. oracle中update语句修改多个字段

    如需要修改下列数据:表名为student 一般会这样写: update student set sname = '李四', sage = 20, sbirthday = to_date('2010-0 ...

  3. Vue____实现本地代码推送到云端仓库的相关操作

    项目初始化搭建完毕,每进行一个功能模块开发的必备操作,目的是方便协同开发以及备份代码 一.每开发一个新功能,都应该创建一个新分枝,待该功能模块开发完成以后,再合并到主分支master中,具体步骤如下: ...

  4. T-SQL代码搜索

    SET ANSI_NULLS ON; SET ANSI_PADDING ON; SET ANSI_WARNINGS ON; SET CONCAT_NULL_YIELDS_NULL ON; SET NU ...

  5. 解决Coursera视频无法观看的三种方法(亲测有效)

      ​   最近在coursera上课时出现了视频黑屏,网页缓冲,无法观看等问题,经过查询发现很多人也有同样的问题.对于不同的原因,一般来说解决方法也不同.这里有三种办法,大家可以挨个尝试,肯定有一个 ...

  6. 洛谷$P2486\ [SDOI2011]$染色 线段树+树链剖分

    正解:线段树+树链剖分 解题报告: 传送门$QwQ$ 其实是道蛮板子的题,,,但因为我写得很呆然后写了贼久之后发现想法有问题要重构,就很难受,就先写个题解算了$kk$ 考虑先跑个树剖,然后按$dfn$ ...

  7. bootstrap 轮播craousel 采坑之(修改默认鼠标浮动轮播不停止)

    首先上bootstrap 官网 https://v3.bootcss.com/javascript/#carousel 设置这个参数就可以,后面说如何采坑.见代码 html 部分 <!-- 轮播 ...

  8. 「洛谷P2906」[USACO08OPEN]牛的街区Cow Neighborhoods 解题报告

    P2906 [USACO08OPEN]牛的街区Cow Neighborhoods 题目描述 Those Who Know About Cows are aware of the way cows gr ...

  9. 「USACO 1.3」 Name That Number 解题报告

    \(注意 该篇题解为本人较早时期写的题解 所以会很傻 直接能用map 以string为下标偏偏要绕弯儿 有时间改一改QAQ\) [USACO1.2]Name That Number 题目描述 在威斯康 ...

  10. 再也不怕和老外交流了!我用python实现一个微信聊天翻译助手!

    前言 在前面的一篇文章如何用python“优雅的”调用有道翻译中咱们清楚的写过如何一层一层的解开有道翻译的面纱,并且笔者说过那只是脑洞的开始.现在笔者又回来了.当你遇到一些外国小哥哥小姐姐很心动.想结 ...