AcWing 847. 图中点的层次
队列
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
const int N = ;
int n, m;
int h[N], e[N], ne[N], idx;
int d[N];
void add(int a, int b) {
e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
int bfs() {
memset(d, -, sizeof d);
queue<int> q;
d[] = ;
q.push();
while (q.size()) {//当队列不空
int t = q.front();//取得队头
q.pop();
for (int i = h[t]; i != -; i = ne[i]) {
int j = e[i];//j扩展
if (d[j] == -) {//如果没有被遍历过
d[j] = d[t] + ;//扩展
q.push(j);//插入
}
}
}
return d[n];
}
int main() {
scanf("%d%d", &n, &m);
memset(h, -, sizeof h);
for (int i = ; i < m; i ++ ) {
int a, b;
scanf("%d%d", &a, &b);
add(a, b);
}
cout << bfs() << endl;
return ;
}
模拟队列
#include<bits/stdc++.h>
using namespace std ;
const int N=;
int n,m;
int h[N],e[N],ne[N],idx;
int d[N],q[N];
void add(int a,int b)
{
e[idx]=b;
ne[idx]=h[a];
h[a]=idx++;
}
int bfs()
{
int hh=,tt=;
q[]=;
memset(d,-,sizeof d);
d[]=;
while(hh<=tt)//当队列不空
{
int t=q[hh++];//取队头
for(int i=h[t];i!=-;i=ne[i])//扩展
{
int j=e[i];
if(d[j]==-)
{
d[j]=d[t]+;
q[++tt]=j;
}
}
}
return d[n];
}
int main()
{
cin>>n>>m;
memset(h,-,sizeof h);
for(int i=;i<m;i++)
{
int a,b;
cin>>a>>b;
add(a,b);
}
cout<<bfs()<<endl;
}
AcWing 847. 图中点的层次的更多相关文章
- 图的广度优先/层次 遍历(BFS) c++ 队列实现
在之前的博文中,介绍了图的深度优先遍历,并分别进行了递归和非递归实现.BFS 无法递归实现,最广泛的实现是利用队列(queue).这与DFS的栈实现是极其相似的,甚至代码几乎都很少需要改动.从给定的起 ...
- eclipse-查看继承层次图/继承实现层次图
阅读代码时,如果想要看某个类继承了哪些类.实现了哪些接口.哪些类继承了这个类,恰巧这个类的继承实现结构又比较复杂,那么如果对开发工具不是很熟练,这个需求是比较难以实现的.eclipse中的type h ...
- 树与图的DFS与BFS
树的DFS 题目:https://www.acwing.com/problem/content/848/ 代码 #include<bits/stdc++.h> using namespac ...
- 聚类:层次聚类、基于划分的聚类(k-means)、基于密度的聚类、基于模型的聚类
一.层次聚类 1.层次聚类的原理及分类 1)层次法(Hierarchicalmethods)先计算样本之间的距离.每次将距离最近的点合并到同一个类.然后,再计算类与类之间的距离,将距离最近的类合并为一 ...
- HTTP协议漫谈 C#实现图(Graph) C#实现二叉查找树 浅谈进程同步和互斥的概念 C#实现平衡多路查找树(B树)
HTTP协议漫谈 简介 园子里已经有不少介绍HTTP的的好文章.对HTTP的一些细节介绍的比较好,所以本篇文章不会对HTTP的细节进行深究,而是从够高和更结构化的角度将HTTP协议的元素进行分类讲 ...
- POJ_2987_Firing_(最大流+最大权闭合图)
描述 http://poj.org/problem?id=2987 要炒员工鱿鱼,炒了一个人,他的下属一定被炒.给出每个人被炒后公司的收益(负值表示亏损),问怎样炒公司收益最大,以及这种方法炒了几个人 ...
- Directx11学习笔记【十七】纹理贴图
本文由zhangbaochong原创,转载请注明出处http://www.cnblogs.com/zhangbaochong/p/5596180.html 在之前的例子中,我们实现了光照和材质使得场景 ...
- 图的存储结构:邻接矩阵(邻接表)&链式前向星
[概念]疏松图&稠密图: 疏松图指,点连接的边不多的图,反之(点连接的边多)则为稠密图. Tips:邻接矩阵与邻接表相比,疏松图多用邻接表,稠密图多用邻接矩阵. 邻接矩阵: 开一个二维数组gr ...
- "《算法导论》之‘图’":不带权二分图最大匹配(匈牙利算法)
博文“二分图的最大匹配.完美匹配和匈牙利算法”对二分图相关的几个概念讲的特别形象,特别容易理解.本文介绍部分主要摘自此博文. 还有其他可参考博文: 趣写算法系列之--匈牙利算法 用于二分图匹配的匈牙利 ...
随机推荐
- [Code+#4] 最短路 - 建图优化,最短路
最短路问题,然而对于任意\(i,j\),从\(i\)到\(j\)可以只花费\((i xor j) \cdot C\) 对每个点\(i\),只考虑到\(j\)满足\(j=i xor 2^k, j \le ...
- 智能手机中下一次被消灭的部件是电话卡和TF卡
智能手机中下一次被消灭的部件是电话卡和TF卡. 侧滑实体键盘,实体拍照键,HDMI外接接口,实体切换双卡键,可拆卸后盖……这些都消亡了,被其更好的内在设计所取代.而电话卡和TF卡仍在使用.将来的智能手 ...
- SequoiaDB报告创建线程失败的解决办法
1.问题背景 对于分布式数据库和分布式环境,高并发和高性能压力的情况下,出现线程创建失败等等问题也是十分常见的,这时候就十分考虑数据库管理员的经验,需要能快速的定位到问题和瓶颈所在,快速解决.本文也是 ...
- 洛谷P1372 又是毕业季I
https://www.luogu.org/problem/P1372 #include<bits/stdc++.h> using namespace std; long long n,k ...
- Linux - Shell - 参数获取
概述 参数 背景 复习一下 shell 脚本的参数获取 场景 os centos7 1. 参数: 基础 概述 简单描述 参数 1. 获取参数 获取 第一个 参数 获取参数 使用 ${num} 获取参数 ...
- [HDU4609] 3-idiots - 多项式乘法,FFT
题意:有\(n\)个正整数,求随机选取一个3组合,能构成三角形的概率. Solution: 很容易想到构造权值序列,对其卷积得到任取两条边(可重复)总长度为某数时的方案数序列,我们希望将它转化为两条边 ...
- ORA_12514:TNS:listener does not currently know of service requested in connect descriptor
问题描述 ORA_12514:TNS:listener does not currently know of service requested in connect descriptor 解决方式 ...
- javascript增强typeof 对复杂类型的判断
js中有六种数据类型,包括五种基本数据类型(Number,String,Boolean,Undefined,Null),和一种复杂数据类型(Object). typeof 由于js中的变量是松散类型的 ...
- Unity中常用的数据结构总结
本篇博文对U3D经常用到的数据结构和各种数据结构的应用场景总结下. 1.几种常见的数据结构 这里主要总结下在工作中常碰到的几种数据结构:Array,ArrayList,List<T>,Li ...
- 剑指offer 面试题. 数据流中的中位数
题目描述 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值.如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值.我们 ...