Description
Background 
Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight. 
Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know.

Problem 
You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's place). You may assume that there is at least one path. All streets can be travelled in both directions.

Input

The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for the scenario with a blank line.

Sample Input

1
3 3
1 2 3
1 3 4
2 3 5

Sample Output

Scenario #1:
4 题意:这个题目呢,跟上一篇的题意有点相反,这一次是求在街道1到达街道n的路径所能承受的最大重量。也就是求能从1到达n的路径上的最小承重的最大值。
思路:Dijkstra运用,我们知道dijkstra是每一次将离源点最近的那一一个点进行松弛,而我们现在要求最小承重的最大值,那我们就应该将离源点承重最大的那个点进行松弛。
 #include<iostream>
#include<algorithm>
#include<cstring> using namespace std;
int n, m, dis[], mp[][], vis[];
void Dijkstra()
{
for (int i = ; i <= n; i++) {
vis[i] = ; dis[i] = mp[][i];//初始化为1到i的最大承重
}
for (int i = ; i <= n; i++) {
int cnt = , k;
for (int j = ; j <= n; j++) {
if (!vis[j] && dis[j] > cnt) {
cnt = dis[j];
k = j;
}
}
vis[k] = ;
for (int j = ; j <= n; j++) {
if (!vis[j] && dis[j] < min(dis[k], mp[k][j]))
dis[j] = min(dis[k], mp[k][j]);
}
}
}
int main()
{
ios::sync_with_stdio(false);
int T;
cin >> T;
for(int t=;t<=T;t++){
cin >> n >> m;
memset(mp, , sizeof(mp));
for (int a, b, c, i = ; i < m; i++) {
cin >> a >> b >> c;
mp[a][b] = mp[b][a] = c;
}
Dijkstra();
cout << "Scenario #" << t << ":" << endl;
cout << dis[n] << endl << endl;
}
return ;
}

POJ 1797 Heavy Transportation(Dijkstra运用)的更多相关文章

  1. POJ.1797 Heavy Transportation (Dijkstra变形)

    POJ.1797 Heavy Transportation (Dijkstra变形) 题意分析 给出n个点,m条边的城市网络,其中 x y d 代表由x到y(或由y到x)的公路所能承受的最大重量为d, ...

  2. POJ 1797 Heavy Transportation (Dijkstra)

    题目链接:POJ 1797 Description Background Hugo Heavy is happy. After the breakdown of the Cargolifter pro ...

  3. POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径)

    POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径) Description Background Hugo ...

  4. poj 1797 Heavy Transportation(最大生成树)

    poj 1797 Heavy Transportation Description Background Hugo Heavy is happy. After the breakdown of the ...

  5. POJ 1797 Heavy Transportation

    题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  6. POJ 1797 Heavy Transportation SPFA变形

    原题链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  7. POJ 1797 Heavy Transportation (Dijkstra变形)

    F - Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & ...

  8. POJ 1797 ——Heavy Transportation——————【最短路、Dijkstra、最短边最大化】

    Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64 ...

  9. POJ 1797 Heavy Transportation (dijkstra 最小边最大)

    Heavy Transportation 题目链接: http://acm.hust.edu.cn/vjudge/contest/66569#problem/A Description Backgro ...

  10. POJ 1797 Heavy Transportation (最大生成树)

    题目链接:POJ 1797 Description Background Hugo Heavy is happy. After the breakdown of the Cargolifter pro ...

随机推荐

  1. 【JZOJ4793】【GDOI2017模拟9.21】妮厨的愤怒

    题目描述 栋栋和标标都是厨力++的妮厨.俗话说"一机房不容二厨",他们两个都加入了某OI( )交流♂( )群,在钦定老婆的时候出现了偏差,于是闹得不可开交.可是栋栋是群内的长者,斗 ...

  2. Android书架实现

    转自http://blog.csdn.net/wangkuifeng0118/article/details/7944215 书架效果: 下面先看一下书架的实现原理吧! 首先看一下layout下的布局 ...

  3. SiteMesh:一个优于Apache Tiles的Web页面布局、装饰框架

    一.SiteMesh项目简介 OS(OpenSymphony)的SiteMesh是一个用来在JSP中实现页面布局和装饰(layout and decoration)的框架组件,能够帮助网站开发人员较容 ...

  4. 支付宝sdk iOS 集成

    1添加支付宝源文件和库文件AlipayOrder.h    AlipayOrder.m    AlipayResult.h    AlipayResult.m  AlixLibService.h   ...

  5. Servlet FilterConfig

    FilterConfig的对象由Web容器创建.这个对象可用于获取web.xml文件中Filter的配置信息 文件:index.html <!DOCTYPE html> <html& ...

  6. 猜年龄v2.0

    ''' 用户登录,只有三次机会 给定年龄,用户可以猜三次年龄 年龄猜对,让用户选择两次奖励,输入无效字符,让其选择要不要礼物 用户选择两次奖励后可以退出,选择第一次后提示还有一次 ''' #基本信息定 ...

  7. HZOJ Silhouette

    转化一下题意:给出矩阵每行每列的最大值,求满足条件的矩阵个数. 先将A,B按从大到小排序,显然没有什么影响.如果A的最大值不等于B的最大值那么无解否则一定有解. 考虑从大到小枚举A,B中出现的数s,那 ...

  8. 巨蟒python全栈开发-第11阶段 ansible3_2入门八个模块

    大纲: 1.file模块 2.fetch模块 3.yum&&pip模块 4.service模块 5.cron模块 6.user模块 7.group模块

  9. poj 1845 【数论:逆元,二分(乘法),拓展欧几里得,费马小定理】

    POJ 1845 题意不说了,网上一大堆.此题做了一天,必须要整理一下了. 刚开始用费马小定理做,WA.(poj敢说我代码WA???)(以下代码其实都不严谨,按照数据要求A是可以等于0的,那么结果自然 ...

  10. Java练习 SDUT-2174_回文时间

    回文时间 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description HH 每天都会熬夜写代码,然后很晚才睡觉,但是每天早晨六点多必 ...