一、预备知识

减少过拟合的方法有:(1)增加数据 (2)正则化(3)降维

维度灾难:从几何角度看会导致数据的稀疏性

举例1:正方形中有一个内切圆,当维度D趋近于无穷大时,圆内的数据几乎为0,所有的数据集中于球外(空壳)

举例2:圆内有个内圆,当维度D趋近于无穷大时,环形内的数据与外圆的数据比为1,说明所有的数据集中于环中(空壳)

样本均值 & 样本方差的矩阵表示

二、PCA:一个中心 + 两个基本点(最大投影方差、最小重构距离)

1、最大投影方差角度

2、最小重构代价角度

3、SVD角度

主成分分析(PCA):先得到方向(主成分),再得到坐标

主坐标分析(PCoA):直接得到坐标

4、概率角度(probabilistic PCA,P-PCA)

 GMM与P-PCA的区别在于,GMM的隐变量是离散的,而P-PCA的隐变量是连续的。

5、PCA算法总结

这里对PCA算法做一个总结。作为一个非监督学习的降维方法,它只需要特征值分解,就可以对数据进行压缩,去噪。因此在实际场景应用很广泛。为了克服PCA的一些缺点,出现了很多PCA的变种,比如为解决非线性降维的KPCA,还有解决内存限制的增量PCA方法Incremental PCA,以及解决稀疏数据降维的PCA方法Sparse PCA等。

PCA算法的主要优点有:

  • 仅仅需要以方差衡量信息量,不受数据集以外的因素影响。 
  • 各主成分之间正交,可消除原始数据成分间的相互影响的因素。
  • 计算方法简单,主要运算是特征值分解,易于实现。

PCA算法的主要缺点有:

  • 主成分各个特征维度的含义具有一定的模糊性,不如原始样本特征的解释性强。
  • 方差小的非主成分也可能含有对样本差异的重要信息,因降维丢弃可能对后续数据处理有影响。

参考文献:

【1】机器学习(28)【降维】之sklearn中PCA库讲解与实战

【2】PCA的数学原理

【3】PCA主成分分析学习总结

机器学习理论基础学习5--- PCA的更多相关文章

  1. 机器学习理论基础学习12---MCMC

    作为一种随机采样方法,马尔科夫链蒙特卡罗(Markov Chain Monte Carlo,以下简称MCMC)在机器学习,深度学习以及自然语言处理等领域都有广泛的应用,是很多复杂算法求解的基础.比如分 ...

  2. 机器学习理论基础学习3.2--- Linear classification 线性分类之线性判别分析(LDA)

    在学习LDA之前,有必要将其自然语言处理领域的LDA区别开来,在自然语言处理领域, LDA是隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA),是一种处理文档的主题 ...

  3. 机器学习理论基础学习4--- SVM(基于结构风险最小化)

    一.什么是SVM? SVM(Support Vector Machine)又称为支持向量机,是一种二分类的模型.当然如果进行修改之后也是可以用于多类别问题的分类.支持向量机可以分为线性和非线性两大类. ...

  4. 机器学习理论基础学习13--- 隐马尔科夫模型 (HMM)

    隐含马尔可夫模型并不是俄罗斯数学家马尔可夫发明的,而是美国数学家鲍姆提出的,隐含马尔可夫模型的训练方法(鲍姆-韦尔奇算法)也是以他名字命名的.隐含马尔可夫模型一直被认为是解决大多数自然语言处理问题最为 ...

  5. 机器学习理论基础学习1——频率派 VS 贝叶斯派

    频率派 贝叶斯派 theta是个未知的常量,X是随机变量, theta是个随机变量,X是随机变量 MLE最大似然估计 MAE最大后验概率 统计机器学习,优化问题 1)建立模型.概率 2)定义损失函数 ...

  6. 机器学习理论基础学习3.1--- Linear classification 线性分类之感知机PLA(Percetron Learning Algorithm)

    一.感知机(Perception) 1.1 原理: 感知机是二分类的线性模型,其输入是实例的特征向量,输出的是事例的类别,分别是+1和-1,属于判别模型. 假设训练数据集是线性可分的,感知机学习的目标 ...

  7. 机器学习理论基础学习3.3--- Linear classification 线性分类之logistic regression(基于经验风险最小化)

    一.逻辑回归是什么? 1.逻辑回归 逻辑回归假设数据服从伯努利分布,通过极大化似然函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的. logistic回归也称为逻辑回归,与线性回归这样输出 ...

  8. 机器学习理论基础学习17---贝叶斯线性回归(Bayesian Linear Regression)

    本文顺序 一.回忆线性回归 线性回归用最小二乘法,转换为极大似然估计求解参数W,但这很容易导致过拟合,由此引入了带正则化的最小二乘法(可证明等价于最大后验概率) 二.什么是贝叶斯回归? 基于上面的讨论 ...

  9. 机器学习理论基础学习3.4--- Linear classification 线性分类之Gaussian Discriminant Analysis高斯判别模型

    一.什么是高斯判别模型? 二.怎么求解参数?

随机推荐

  1. LeetCode - 637. Average of Levels in Binary Tree

    Given a non-empty binary tree, return the average value of the nodes on each level in the form of an ...

  2. SharpGL学习笔记(二) 模型变换(几何变换)

    (二) 模型变换 模形变换就是指的在世界坐标系中(world space)做“移动”,“旋转", "缩放"三种操作. 首先要说明的,在Opengl中,是用4x4矩阵进行坐 ...

  3. SSL是什么?如何使用?

    SSL(Secure Sockets Layer 安全套接层),及其继任者传输层安全(Transport Layer Security,TLS)是为网络通信提供安全及数据完整性的一种安全协议.TLS与 ...

  4. Cross-compilation using Clang

    Introduction This document will guide you in choosing the right Clang options for cross-compiling yo ...

  5. spring应用中多次读取http post方法中的流(附源码)

    一.问题简述 先说下为啥有这个需求,在基于spring的web应用中,一般会在controller层获取http方法body中的数据. 方式1: 比如http请求的content-type为appli ...

  6. 应用程序创建自己的奔溃转储(crash dump)文件

    1.注册自定义的UnhandledExceptionFilter,C/C++ Runtime Library下需要注意自定义handler被移除(hook kernel32.dll的SetUnhand ...

  7. Egret动态设置按钮的图片

    参考: 动态设置Button按钮的状态图片 按钮有3个状态,up down disabled.这里区别于source,source.down,source.disabled,而是每个状态单独一个ima ...

  8. 【CF860E】Arkady and a Nobody-men 长链剖分

    [CF860E]Arkady and a Nobody-men 题意:给你一棵n个点的有根树.如果b是a的祖先,定义$r(a,b)$为b的子树中深度小于等于a的深度的点的个数(包括a).定义$z(a) ...

  9. 【BZOJ3691】游行 费用流

    [BZOJ3691]游行 Description 每年春季,在某岛屿上都会举行游行活动.在这个岛屿上有N个城市,M条连接着城市的有向道路.你要安排英雄们的巡游.英雄从城市si出发,经过若干个城市,到城 ...

  10. 一个简单web系统的接口性能分析及调优过程

    在测试一个简单系统接口性能压力时,压到一定数量,程序总是崩溃,查看相关机器相关数据时,CPU.内存.IO占用均不高,问题自然出现在其它地方先介绍下系统部件架构 Resin版本为:[root@local ...