luoguP1064 金明的预算方案 (有依赖的背包问题)
题目链接:https://www.luogu.org/problemnew/show/P1064
这是一个有依赖的背包问题,属于01背包的变式。这题还好,每个主件最多有2个附件,那么在对主件进行背包的时候,决策就不再是两个,而是五个。
01背包的决策:
- 不选;
- 选;
这个题目的决策:
- 不选;
- 只选主件;
- 选主件和附件1;
- 选主件和附件2;
- 选主件,附件1和附件2;
这里需要先判断选附件的决策是不是可行,即如果当前容量能放下附件1或附件2或附件1和附件2,才考虑状态转移。
因此这题的状态转移方程有4个:
f[j]=max(f[j],f[j-mv[i]]+mc[i]);
f[j]=max(f[j],f[j-mv[i]-av[i][1]]+mc[i]+ac[i][1]);
f[j]=max(f[j],f[j-mv[i]-av[i][2]]+mc[i]+ac[i][2]);
f[j]=max(f[j],f[j-mv[i]-av[i][1]-av[i][2]]+mc[i]+ac[i][1]+ac[i][2]);
其中mv表示主件的费用数组,mc表示主件的价值(费用×重要度)数组,av表示附件的费用数组,ac表示附件的价值数组。
av[i][0]表示主件i的附件个数,av[i][1/2]表示主件i的附件1/2的费用,ac[i][1/2]表示主件i的附件1/2的价值。
AC代码如下:
#include<cstdio>
#include<algorithm>
using namespace std; int n,m;
int mv[],mc[],av[][],ac[][];
int f[]; int main(){
scanf("%d%d",&n,&m);
int v,p,q;
for(int i=;i<=m;i++){
scanf("%d%d%d",&v,&p,&q);
if(!q){
mv[i]=v;
mc[i]=v*p;
}
else{
av[q][]++;
av[q][av[q][]]=v;
ac[q][av[q][]]=v*p;
}
}
for(int i=;i<=m;i++)
if(mv[i]){
for(int j=n;j>=mv[i];j--){
f[j]=max(f[j],f[j-mv[i]]+mc[i]);
if(j>=mv[i]+av[i][])
f[j]=max(f[j],f[j-mv[i]-av[i][]]+mc[i]+ac[i][]);
if(j>=mv[i]+av[i][])
f[j]=max(f[j],f[j-mv[i]-av[i][]]+mc[i]+ac[i][]);
if(j>=mv[i]+av[i][]+av[i][])
f[j]=max(f[j],f[j-mv[i]-av[i][]-av[i][]]+mc[i]+ac[i][]+ac[i][]);
}
}
printf("%d\n",f[n]);
return ;
}
luoguP1064 金明的预算方案 (有依赖的背包问题)的更多相关文章
- 洛谷 P1064 金明的预算方案(有依赖的背包问题)
题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”.今 ...
- 洛谷 P1064 金明的预算方案 (有依赖的0/1背包)
题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”. ...
- 【洛谷P1064】[NOIP2006] 金明的预算方案
金明的预算方案 显然是个背包问题 把每个主件和它对应的附件放在一组,枚举每一组,有以下几种选法: 1.都不选 2.只选主件 3.一个主件+一个附件 4.一个主件+两个附件 于是就成了01背包.. #i ...
- 有依赖的背包---P1064 金明的预算方案
P1064 金明的预算方案 solution 1 暴搜 70pt dfs (当前搜到了第几个物品,产生的总价值,剩下多少钱) 剪枝 1:如果剩下的钱数<0,直接return就好,没必要继续了 剪 ...
- [LuoguP1064][Noip2006]金明的预算方案
金明的预算方案(Link) 题目描述 现在有\(M\)个物品,每一个物品有一个钱数和重要度,并且有一个\(Q\),如果\(Q = 0\),那么该物件可以单独购买,当\(Q != 0\)时,表示若要购买 ...
- 「NOIP2006」「LuoguP1064」 金明的预算方案(分组背包
题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NNN元钱就行” ...
- [codevs1155][KOJ0558][COJ0178][NOIP2006]金明的预算方案
[codevs1155][KOJ0558][COJ0178][NOIP2006]金明的预算方案 试题描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴 ...
- Luogu 1064 金明的预算方案 / CJOJ 1352 [NOIP2006] 金明的预算方案(动态规划)
Luogu 1064 金明的预算方案 / CJOJ 1352 [NOIP2006] 金明的预算方案(动态规划) Description 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己 ...
- 背包形动态规划 fjutoj2375 金明的预算方案
金明的预算方案 TimeLimit:1000MS MemoryLimit:128MB 64-bit integer IO format:%lld Problem Description 金明今天 ...
随机推荐
- js例子记载
1.获取项目路径的,不一定有用,仅作参考用: function getRootPath() { var curWwwPath = window.document.location.href; //&q ...
- mysql分区表之一:分区原理和优缺点【转】
1.分区表的原理 分区表是由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们也可以直接访问各个分区,存储引擎管理分区的各个底层表和管理普通表一样(所有的底层表都必须使用相同的存储引擎),分 ...
- python 自动化多线程的应用
1.本机上同时执行多个浏览器 import threading,sys from time import sleep,ctime from selenium import webdriver path ...
- appium 3-4-1034等待、日志、性能数据、xpath定位、web driver协议
1.等待 1.1精确等待 sleep 不推荐 @Test public void testWait1() throws InterruptedException{ day_time(); Thread ...
- 浅析Spring框架之一(Spring简介)
免责声明 本文为鄙人搜集网络资源并结合自己所思所得整理而成,如有侵权,敬请谅解. 何为spring框架 Spring是一个开源的轻量级控制反转(IoC)和面向切面(AOP)的容器框架. ◆目的:解决企 ...
- 如何使用App.config文件,读取字符串?
如何使用App.config文件,读取字符串? .在项目里添加App.config文件,内容如下: <?xml version="1.0" encoding="ut ...
- 基于Vue的Ui框架
基于Vue的Ui框架 饿了么公司基于vue开的的vue的Ui组件库 Element Ui 基于vue pc端的UI框架 http://element.eleme.io/ MintUi 基于vue 移动 ...
- lucene中TOKENIZED,UN_TOKENIZED 解釋
Field("content",curArt.getContent(),Field.Store.NO,Field.Index.TOKENIZED)); 這些地方與舊版本有很大的區別 ...
- AJAX相关总结
AJAX即"Asynchronous Javascript And XML"(异步JavaScript和XML),是指一种创建交互式网页应用的网页开发技术. AJAX = 异步 J ...
- SPM——Using Maven+Junit to test Hello Wudi
Last week, ours teacher taught us 'Software Delivery and Build Management'. And in this class, our t ...