题目链接:https://www.luogu.org/problemnew/show/P1064

这是一个有依赖的背包问题,属于01背包的变式。这题还好,每个主件最多有2个附件,那么在对主件进行背包的时候,决策就不再是两个,而是五个。

01背包的决策:

  1. 不选;  
  2. 选;

这个题目的决策:

  1. 不选;
  2. 只选主件;
  3. 选主件和附件1;
  4. 选主件和附件2;
  5. 选主件,附件1和附件2;

这里需要先判断选附件的决策是不是可行,即如果当前容量能放下附件1或附件2或附件1和附件2,才考虑状态转移。

因此这题的状态转移方程有4个:

  f[j]=max(f[j],f[j-mv[i]]+mc[i]);
       f[j]=max(f[j],f[j-mv[i]-av[i][1]]+mc[i]+ac[i][1]);

   f[j]=max(f[j],f[j-mv[i]-av[i][2]]+mc[i]+ac[i][2]);
       f[j]=max(f[j],f[j-mv[i]-av[i][1]-av[i][2]]+mc[i]+ac[i][1]+ac[i][2]);
其中mv表示主件的费用数组,mc表示主件的价值(费用×重要度)数组,av表示附件的费用数组,ac表示附件的价值数组。

av[i][0]表示主件i的附件个数,av[i][1/2]表示主件i的附件1/2的费用,ac[i][1/2]表示主件i的附件1/2的价值。

AC代码如下:

 #include<cstdio>
#include<algorithm>
using namespace std; int n,m;
int mv[],mc[],av[][],ac[][];
int f[]; int main(){
scanf("%d%d",&n,&m);
int v,p,q;
for(int i=;i<=m;i++){
scanf("%d%d%d",&v,&p,&q);
if(!q){
mv[i]=v;
mc[i]=v*p;
}
else{
av[q][]++;
av[q][av[q][]]=v;
ac[q][av[q][]]=v*p;
}
}
for(int i=;i<=m;i++)
if(mv[i]){
for(int j=n;j>=mv[i];j--){
f[j]=max(f[j],f[j-mv[i]]+mc[i]);
if(j>=mv[i]+av[i][])
f[j]=max(f[j],f[j-mv[i]-av[i][]]+mc[i]+ac[i][]);
if(j>=mv[i]+av[i][])
f[j]=max(f[j],f[j-mv[i]-av[i][]]+mc[i]+ac[i][]);
if(j>=mv[i]+av[i][]+av[i][])
f[j]=max(f[j],f[j-mv[i]-av[i][]-av[i][]]+mc[i]+ac[i][]+ac[i][]);
}
}
printf("%d\n",f[n]);
return ;
}

luoguP1064 金明的预算方案 (有依赖的背包问题)的更多相关文章

  1. 洛谷 P1064 金明的预算方案(有依赖的背包问题)

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”.今 ...

  2. 洛谷 P1064 金明的预算方案 (有依赖的0/1背包)

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”. ...

  3. 【洛谷P1064】[NOIP2006] 金明的预算方案

    金明的预算方案 显然是个背包问题 把每个主件和它对应的附件放在一组,枚举每一组,有以下几种选法: 1.都不选 2.只选主件 3.一个主件+一个附件 4.一个主件+两个附件 于是就成了01背包.. #i ...

  4. 有依赖的背包---P1064 金明的预算方案

    P1064 金明的预算方案 solution 1 暴搜 70pt dfs (当前搜到了第几个物品,产生的总价值,剩下多少钱) 剪枝 1:如果剩下的钱数<0,直接return就好,没必要继续了 剪 ...

  5. [LuoguP1064][Noip2006]金明的预算方案

    金明的预算方案(Link) 题目描述 现在有\(M\)个物品,每一个物品有一个钱数和重要度,并且有一个\(Q\),如果\(Q = 0\),那么该物件可以单独购买,当\(Q != 0\)时,表示若要购买 ...

  6. 「NOIP2006」「LuoguP1064」 金明的预算方案(分组背包

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NNN元钱就行” ...

  7. [codevs1155][KOJ0558][COJ0178][NOIP2006]金明的预算方案

    [codevs1155][KOJ0558][COJ0178][NOIP2006]金明的预算方案 试题描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴 ...

  8. Luogu 1064 金明的预算方案 / CJOJ 1352 [NOIP2006] 金明的预算方案(动态规划)

    Luogu 1064 金明的预算方案 / CJOJ 1352 [NOIP2006] 金明的预算方案(动态规划) Description 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己 ...

  9. 背包形动态规划 fjutoj2375 金明的预算方案

    金明的预算方案 TimeLimit:1000MS  MemoryLimit:128MB 64-bit integer IO format:%lld   Problem Description 金明今天 ...

随机推荐

  1. bzoj3631 松鼠的新家

    Description 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在“树”上.松鼠想邀 ...

  2. js阻止默认事件、拖拽等等

    1.自定义右键菜单: <!DOCTYPE HTML> <html> <head> <meta charset="utf-8"> &l ...

  3. DOM操作之获取HTML、文本和值

    在前面的知识中,我们有提到一个text()方法用来获取文本,其实,在jQuery中,获取HTML和文本的方法有很多,下面依次演示这些方法. 在开始操作前,我们先在html中添加如下代码,后期所有的操作 ...

  4. ASP.NET Web Pages:WebGrid 帮助器

    ylbtech-.Net-ASP.NET Web Pages:WebGrid 帮助器 1.返回顶部 1. ASP.NET Web Pages - WebGrid 帮助器 WebGrid - 众多有用的 ...

  5. php parse_str() 函数

    php parse_str() 函数把查询字符串解析到变量中,主要用于页面之间传值(参数).本文章向码农介绍php parse_str() 函数的使用方法,感兴趣的码农可以参考一下. 定义和用法 pa ...

  6. git 隐藏文件删除

    1.首先切换到当前目录 cd /Users/wlm/Desktop/XXX/XXX 2.执行下面的命令: defaults write com.apple.finder AppleShowAllFil ...

  7. VSCode编辑器编写Python代码

    如何用VSCode愉快的写Python https://code.visualstudio.com/   在学习Python的过程中,一直没有找到比较趁手的第三方编辑器,用的最多的还是Python自带 ...

  8. Python小代码

    from bs4 import BeautifulSoup import requests url = 'http://www.tripadvisor.cn/Attractions-g60763-Ac ...

  9. Java技术栈

    内容: 1.Java基础(JavaSE) 2.数据结构与算法与设计模式 3.计算机理论知识 4.数据库 5.Java web(JavaEE) 6.消息队列 7.Linux及服务器相关 8.分布式相关 ...

  10. uva-10392-因数分解

    #include<stdio.h> #include<iostream> #include<queue> #include<memory.h> #inc ...