题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6441

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)

Problem Description
people in USSS love math very much, and there is a famous math problem .
give you two integers n,a,you are required to find 2 integers b,c such that $a^n + b^n = c^n$.

Input
one line contains one integer T;(1≤T≤1000000)
next T lines contains two integers n,a;(0≤n≤1000,000,000,3≤a≤40000)

Output
print two integers b,c if b,c exits;(1≤b,c≤1000,000,000);
else print two integers -1 -1 instead.

Sample Input
1
2 3

Sample Output
4 5

题意:

给出 $n$ 和 $a$ (0≤n≤1e9,3≤a≤4e4),要求你给出 $b$ 和 $c$ 满足 $a^n + b^n = c^n$。

题解:

根据费马大定理,$n > 2$ 时 $a^n + b^n = c^n$ 没有整数解,所以只需要计算 $n = 0,1,2$ 这三种情况:

1、$n = 0$,任何的正整数 $b,c$ 都无法使等式成立。

2、$n = 1$,任意取。

3、$n = 2$,$a^2 = \left( {c + b} \right)\left( {c - b} \right)$,分两种情况讨论:

      若 $a$ 为奇数,则 $a^2$ 也为奇数,则取 $b = \frac{{a^2 - 1}}{2},c = \frac{{a^2 + 1}}{2}$;

      若 $a$ 为偶数,则 $a^2$ 必然是 $4$ 的倍数,则取 $b = \frac{{a^2 - 4}}{4},c = \frac{{a^2 + 4}}{4}$。

      

AC代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll; ll a,n; int main()
{
int T;
cin>>T;
while(T--)
{
scanf("%lld%d",&n,&a); if(n== || n>) printf("-1 -1\n");
if(n==) printf("1 %lld\n",a+);
if(n==)
{
if(a%==) printf("%lld %lld\n",(a*a-)/,(a*a+)/);
else printf("%lld %lld\n",(a*a-)/,(a*a+)/);
}
}
}

HDU 6441 - Find Integer - [费马大定理][2018CCPC网络选拔赛第4题]的更多相关文章

  1. hdu 6441 Find Integer(费马大定理+勾股数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6441(本题来源于2018年中国大学生程序设计竞赛网络选拔赛) 题意:输入n和a,求满足等式a^n+b^ ...

  2. HDU 6447 - YJJ's Salesman - [树状数组优化DP][2018CCPC网络选拔赛第10题]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6447 Problem DescriptionYJJ is a salesman who has tra ...

  3. 题解报告:hdu 6441 Find Integer(费马大定理+智慧数)

    Problem Description people in USSS love math very much, and there is a famous math problem .give you ...

  4. HDU 6154 CaoHaha's staff(2017中国大学生程序设计竞赛 - 网络选拔赛)

    题目代号:HDU 6154 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6154 CaoHaha's staff Time Limit: 2000/1 ...

  5. HDU - 6441(费马大定理)

    链接:HDU - 6441 题意:已知 n,a,求 b,c 使 a^n + b^n = c^n 成立. 题解:费马大定理 1.a^n + b^n = c^n,当 n > 2 时无解: 2. 当 ...

  6. HDU 6154 - CaoHaha's staff | 2017 中国大学生程序设计竞赛 - 网络选拔赛

    /* HDU 6154 - CaoHaha's staff [ 构造,贪心 ] | 2017 中国大学生程序设计竞赛 - 网络选拔赛 题意: 整点图,每条线只能连每个方格的边或者对角线 问面积大于n的 ...

  7. HDU 6150 - Vertex Cover | 2017 中国大学生程序设计竞赛 - 网络选拔赛

    思路来自 ICPCCamp /* HDU 6150 - Vertex Cover [ 构造 ] | 2017 中国大学生程序设计竞赛 - 网络选拔赛 题意: 给了你一个贪心法找最小覆盖的算法,构造一组 ...

  8. HDU 6156 - Palindrome Function [ 数位DP ] | 2017 中国大学生程序设计竞赛 - 网络选拔赛

    普通的数位DP计算回文串个数 /* HDU 6156 - Palindrome Function [ 数位DP ] | 2017 中国大学生程序设计竞赛 - 网络选拔赛 2-36进制下回文串个数 */ ...

  9. 2017中国大学生程序设计竞赛 - 网络选拔赛 HDU 6156 数位DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6156 题意:如题. 解法:数位DP,暴力枚举进制之后,就转化成了求L,R区间的回文数的个数,这个直接做 ...

随机推荐

  1. Java单例模式的应用

    单例模式用于保证在程序的运行期间某个类有且仅有一个实例.其优势在于尽可能解决系统资源.通过修改构造方法的访问权限就可以实现单例模式. 代码如下: public class Emperor { priv ...

  2. ios开发之--仿购物类详情页面数量添加小功能

    话不多说先上图:

  3. android studio 使用 SVN

    通过android studio来进行版本控制,先前已经安装了TortoiseSVN-1.9.2,但是在打开android studio的时候会出现 Can't use Subversion comm ...

  4. python --help查询python相关命令

    C:\Users\lenovo>python --help usage: python [option] ... [-c cmd | -m mod | file | -] [arg] ... O ...

  5. RF-字符串转为整数的方法

  6. MFC框架程序解析

    MFC的 程序框架: WinMain函数:程序首先到达全局变量theApp,再到达theAPP的构造函数,最后到达WinMain函数处. 问:为何要定义一个全局对象theAPP,让其在WinMain函 ...

  7. 【转】 编写C#调用的C++DLL

    最近一段时间,经常遇到这些问题,前一阵子研究了一下,没有记下来,没想到最近研究又有些不记得了,今天把它写下来以备忘. 一般我们提供给其他语言调用的DLL,都是用C或者C++编写,然后封装.我这边也是采 ...

  8. 推荐系统之隐语义模型(LFM)

    LFM(latent factor model)隐语义模型,这也是在推荐系统中应用相当普遍的一种模型.那这种模型跟ItemCF或UserCF的不同在于: 对于UserCF,我们可以先计算和目标用户兴趣 ...

  9. 《转》Python学习(19)-python函数(二)-关于lambda

    转自http://www.cnblogs.com/BeginMan/p/3178103.html 一.lambda函数 1.lambda函数基础: lambda函数也叫匿名函数,即,函数没有具体的名称 ...

  10. mysql学习笔记-创建用户以及登录,基本信息查询

    第一天: 创建一个mysql账号:create user ‘新的用户名’@‘localhost’identified by ‘口令’: Now()显示当日日期和时间,user()显示当前的用户,ver ...