ACM数论之旅10---大组合数-卢卡斯定理(在下卢卡斯,你是我的Master吗?(。-`ω´-) )
记得前几章的组合数吧

我们学了O(n^2)的做法,加上逆元,我们又会了O(n)的做法
现在来了新问题,如果n和m很大呢,
比如求C(n, m) % p , n<=1e18,m<=1e18,p<=1e5
看到没有,n和m这么大,但是p却很小,我们要利用这个p
(数论就是这么无聊的东西,我要是让n=1e100,m=1e100,p=1e100你有本事给我算啊(°□°),还不是一样算不出来)
然后,我们著名的卢卡斯(Lucas)在人群中站了出来(`・д・´)说:“让老子来教你这题”
卢卡斯说:
C(n, m) % p = C(n / p, m / p) * C(n%p, m%p) % p
对于C(n / p, m / p),如果n / p 还是很大,可以递归下去,一直到世界的尽头
众人闻此言,无不惊叹,妙哉!妙哉!
(笑死我了o(*≧▽≦)ツ┏━┓拍桌狂笑)
(不要问我证明过程,我不费(´・ω・`))
然后上代码
LL Lucas(LL n, LL m, int p){
return m ? Lucas(n/p, m/p, p) * comb(n%p, m%p, p) % p : ;
}
简洁易懂<( ̄︶ ̄)>
实战一下吧
hdu 5446
http://acm.hdu.edu.cn/showproblem.php?pid=5446
题意:
给你三个数n, m, k
第二行是k个数,p1,p2,p3...pk
所有p的值不相同且p都是质数
求C(n, m) % (p1*p2*p3*...*pk)的值
范围:1≤m≤n≤1e18,1≤k≤10,pi≤1e5,保证p1*p2*p3*...*pk≤1e18
AC代码:
#include<cstdio>
typedef long long LL;
const int N = + ;
LL mul(LL a, LL b, LL p){//快速乘,计算a*b%p
LL ret = ;
while(b){
if(b & ) ret = (ret + a) % p;
a = (a + a) % p;
b >>= ;
}
return ret;
}
LL fact(int n, LL p){//n的阶乘求余p
LL ret = ;
for (int i = ; i <= n ; i ++) ret = ret * i % p ;
return ret ;
}
void ex_gcd(LL a, LL b, LL &x, LL &y, LL &d){
if (!b) {d = a, x = , y = ;}
else{
ex_gcd(b, a % b, y, x, d);
y -= x * (a / b);
}
}
LL inv(LL t, LL p){//如果不存在,返回-1
LL d, x, y;
ex_gcd(t, p, x, y, d);
return d == ? (x % p + p) % p : -;
}
LL comb(int n, int m, LL p){//C(n, m) % p
if (m < || m > n) return ;
return fact(n, p) * inv(fact(m, p), p) % p * inv(fact(n-m, p), p) % p;
}
LL Lucas(LL n, LL m, int p){
return m ? Lucas(n/p, m/p, p) * comb(n%p, m%p, p) % p : ;
}
LL china(int n, LL *a, LL *m){//中国剩余定理
LL M = , ret = ;
for(int i = ; i < n; i ++) M *= m[i];
for(int i = ; i < n; i ++){
LL w = M / m[i];
//ret = (ret + w * inv(w, m[i]) * a[i]) % M;//这句写了会WA,用下面那句
ret = (ret + mul(w * inv(w, m[i]), a[i], M)) % M;
//因为这里直接乘会爆long long ,所以我用快速乘(unsigned long long也是爆掉,除非用高精度)
}
return (ret + M) % M;
}
int main(){
int T, k;
LL n, m, p[], r[];
scanf("%d", &T);
while(T--){
scanf("%I64d%I64d%d", &n, &m, &k);
for(int i = ; i < k; i ++){
scanf("%I64d", &p[i]);
r[i] = Lucas(n, m, p[i]);
}
printf("%I64d\n", china(k, r, p));
}
}
我们知道题目要求C(n, m) % (p1*p2*p3*...*pk)的值
其实这个就是中国剩余定理最后算出结果后的最后一步求余
那C(n, m)相当于以前我们需要用中国剩余定理求的值
然而C(n, m)太大,我们只好先算出
C(n, m) % p1 = r1
C(n, m) % p2 = r2
C(n, m) % p3 = r3
.
.
.
C(n, m) % pk = rk
用Lucas,这些r1,r2,r3...rk可以算出来
然后又是用中国剩余定理求答案
全都是套路。。。
ACM数论之旅10---大组合数-卢卡斯定理(在下卢卡斯,你是我的Master吗?(。-`ω´-) )的更多相关文章
- acm数论之旅--组合数(转载)
随笔 - 20 文章 - 0 评论 - 73 ACM数论之旅8---组合数(组合大法好(,,• ₃ •,,) ) 补充:全错排公式:https://blog.csdn.net/Carey_Lu/ ...
- acm数论之旅--中国剩余定理
ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯) 中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 ...
- acm数论之旅(转载) -- 逆元
ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄)) 数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 ( ...
- acm数论之旅--欧拉函数的证明
随笔 - 20 文章 - 0 评论 - 73 ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭) https://blog.csdn.net/chen_ze_hua ...
- acm数论之旅--数论四大定理
ACM数论之旅5---数论四大定理(你怕不怕(☆゚∀゚)老实告诉我) (本篇无证明,想要证明的去找度娘)o(*≧▽≦)ツ ----------数论四大定理--------- 数论四大定理: 1.威 ...
- ACM数论之旅16---母函数(又名生成函数)(痛并快乐着(╭ ̄3 ̄)╭)
(前排出售零食瓜子) 前言: 母函数是个很难的东西,难在数学 而ACM中所用的母函数只是母函数的基础 应该说除了不好理解外,其他都是非常简单的 母函数即生成函数,是组合数学中尤其是计数方面的一个重要理 ...
- 卢卡斯定理&扩展卢卡斯定理
卢卡斯定理 求\(C_m^n~mod~p\) 设\(m={a_0}^{p_0}+{a_1}^{p_1}+\cdots+{a_k}^{p_k},n={b_0}^{p_0}+{b_1}^{p_1}+\cd ...
- ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯)
中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 7个7个分剩2个 问这个物品有多少个 解这题,我们需要构造一个答案 我们需要构造这 ...
- ACM数论之旅1---素数(万事开头难(>_<))
前言:好多学ACM的人都在问我数论的知识(其实我本人分不清数学和数论有什么区别,反正以后有关数学的知识我都扔进数论分类里面好了) 于是我就准备写一个长篇集,把我知道的数论知识和ACM模板都发上来(而且 ...
随机推荐
- probing privatePath如何作用于ASP.NET MVC View
当View上using一些从probing privatePath加载的程序集,运行时会提示无法找到对应程序集. <runtime> <assemblyBinding xmlns=& ...
- 如何搭建web服务器 使用Nginx搭建反向代理服务器 .
引言:最近公司有台服务器遭受DDOS攻击,流量在70M以上,由于服务器硬件配置较高所以不需要DDOS硬件防火墙.但我们要知道,IDC机房是肯定不允许这种流量一直处于这么高的,因为没法具体知道后面陆续攻 ...
- locate命令的使用
使用locate命令,遇到了这样的情况:当前目录下有一个文件,而使用这个命令时却查找不到这个文件,上网查了一下,找到了原因,就在下面. 1. find find是最常见和最强大的查找命令,你可以用它找 ...
- Unity3D笔记 愤怒的小鸟<一>场景切换
新建3个场景,场景1 Start 十秒后自动切换到场景2 Splash,场景2在二秒后自动切换到场景3 Selection 一.场景一Start 二.场景2 Splash 三.场景3 Selectio ...
- XCache 一种快速可靠的PHP操作码缓存
1,错误报告开启 错误报告是在PHP中一个非常有用的功能,应同时在开发阶段启用. 这可以帮助我们确定我们的代码中的问题. 最常用的功能是“E_ALL”,这有助于我们发现所有的警告和严重错误. 必须指出 ...
- 关于keyGenerator,KeyPairGenerator,SecretKeyFactory的解析
Java加密的常用的加密算法类型有三种 1单向加密:也就是不可逆的加密,例如MD5,SHA,HMAC 2对称加密:也就是加密方和解密方利用同一个秘钥对数据进行加密和解密,例如DES,PBE等等 3非对 ...
- CodeForces - 617E XOR and Favorite Number 莫队算法
https://vjudge.net/problem/CodeForces-617E 题意,给你n个数ax,m个询问Ly,Ry, 问LR内有几对i,j,使得ai^...^ aj =k. 题解:第一道 ...
- hdu-4283 You Are the One 区间dp,
题意:n个人排队上台,每个人有一屌丝值D,他的不满意值=D*(k-1)(k为他前面的总人数). 求整个队列不满意值之和的最小值.你只有一个操作,就是把队首的人塞进小黑屋,也就是压入栈中,后面的人就被提 ...
- GraphLab GraphLab和MapReduce的区别
https://turi.com/ GraphLab和MapReduce的区别 https://baike.baidu.com/item/GraphLab/16423125 2. GraphLab和M ...
- SQL语句常见视图操作部分试题(一)
创建一个名称为EMPLOYEES_VU的视图,它基于EMPLOYEES表中的雇员号.雇员名和部门号.将雇员名的列标题改为EMPLOYEE. CREATE VIEW EMPLOYEES_VU AS SE ...