sklearn-特征工程之特征选择
title: sklearn-特征工程之特征选择
date: 2016-11-25 22:49:24
categories: skearn
tags: sklearn
抄袭/参考资料
- 使用sklearn做单机特征工程
- sckearn中文
- 周志华《机器学习》
当数据预处理完成后,我们需要选择有意义的特征输入机器学习的算法和模型进行训练。通常来说,从两个方面考虑来选择特征:
- 特征是否发散:如果一个特征不发散,例如方差接近于0,也就是说样本在这个特征上基本上没有差异,这个特征对于样本的区分并没有什么用。
- 特征与目标的相关性:这点比较显见,与目标相关性高的特征,应当优选选择。除方差法外,本文介绍的其他方法均从相关性考虑。
根据特征选择的形式又可以将特征选择方法分为3种:
- Filter:过滤法,按照发散性或者相关性对各个特征进行评分,设定阈值或者待选择阈值的个数,选择特征。
- Wrapper:包装法,根据目标函数(通常是预测效果评分),每次选择若干特征,或者排除若干特征。
- Embedded:嵌入法,先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据系数从大到小选择特征。类似于Filter方法,但是是通过训练来确定特征的优劣。
我们使用sklearn中的feature_selection库来进行特征选择。
Filter:过滤法
方差选择法
VarianceThreshold 是特征选择中的一项基本方法。它会移除所有方差不满足阈值的特征。默认设置下,它将移除所有方差为0的特征,即那些在所有样本中数值完全相同的特征。
from sklearn.feature_selection import VarianceThreshold
# 设置方差阈值为100
sel = VarianceThreshold(threshold=100)
sel.fit_transform(X)
单变量特征选择
单变量特征选择基于单变量的统计测试来选择最佳特征。它可以看作预测模型的一项预处理。Scikit-learn将特征选择程序用包含transform 函数的对象来展现:
SelectKBest移除得分前 \(k\) 名以外的所有特征SelectPercentile移除得分在用户指定百分比以后的特征- 对每个特征使用通用的单变量统计测试: 假正率(false positive rate)
SelectFpr, 伪发现率(false discovery rate)SelectFdr, 或族系误差率SelectFwe. GenericUnivariateSelect可以设置不同的策略来进行单变量特征选择。同时不同的选择策略也能够使用超参数寻优,从而让我们找到最佳的单变量特征选择策略。
这些作为打分函数输入的对象(同样位于feature_selection模块中),返回单变量的概率值:
- 用于回归:
f_regression- 用于分类:
chi2(卡方)orf_classif
相关系数法
卡方检验
互信息法
Wrapper:包装法
递归特征消除法
递归消除特征法使用一个基模型来进行多轮训练,每轮训练后,消除若干权值系数的特征,再基于新的特征集进行下一轮训练。
Embedded:嵌入法 / 基于模型进行特征选择
基于惩罚项的特征选择法
class sklearn.feature_selection.SelectFromModel(estimator,
threshold=None,
prefit=False)
使用L1范数作为惩罚项的:ref:Linear models会得到稀疏解:大部分特征对应的系数为0。当你希望减少特征的维度以用于其它分类器时,可以通过 feature_selection.SelectFromModel 来选择不为0的系数。特别指出,常用于此目的的稀疏预测模型有:
-
- 对于Lasso,参数\(alpha\)越大,被选中的特征越少 。
分类:
linear_model.LogisticRegression和svm.LinearSVC- 对于SVM和逻辑回归,参数\(C\)控制稀疏性:\(C\)越小,被选中的特征越少。
from sklearn.feature_selection import SelectFromModel
from sklearn.linear_model import Lasso
lr = Lasso(alpha=10)
lr.fit(X,y)
#带L1惩罚项的逻辑回归作为基模型的特征选择
model = SelectFromModel(lr, prefit=True)
model.transform(X)
基于树模型的特征选择法
基于树的预测模型(见 sklearn.tree 模块,森林见 sklearn.ensemble 模块)能够用来计算特征的重要程度,因此能用来去除不相关的特征(结合 sklearn.feature_selection.SelectFromModel )
from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import GradientBoostingRegressor
gbdt = GradientBoostingRegressor()
gbdt.fit(X,y)
#GBDT作为基模型的特征选择
model = SelectFromModel(gbdt, prefit=True)
model.transform(X)
sklearn-特征工程之特征选择的更多相关文章
- sklearn—特征工程
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- sklearn特征工程
目录 一. 特征工程是什么? 2 ①特征使用方案 3 ②特征获取方案 4 ③特征处理 4 1. 特征清洗 4 2. 数据预处理 4 3. 特 ...
- sklearn特征工程总结
转自: http://www.cnblogs.com/jasonfreak/p/5448385.html https://www.zhihu.com/question/28641663/answer/ ...
- Machine Learning-特征工程之特征选择
特征工程之特征选择 目录 简介 1 Filter(过滤式选择) 1.1 移除低方差特征(variance threshold) 1.2 信息增益(information gain) 1.3 单变量特征 ...
- 机器学习实战基础(十八):sklearn中的数据预处理和特征工程(十一)特征选择 之 Wrapper包装法
Wrapper包装法 包装法也是一个特征选择和算法训练同时进行的方法,与嵌入法十分相似,它也是依赖于算法自身的选择,比如coef_属性或feature_importances_属性来完成特征选择.但不 ...
- 机器学习实战基础(十七):sklearn中的数据预处理和特征工程(十)特征选择 之 Embedded嵌入法
Embedded嵌入法 嵌入法是一种让算法自己决定使用哪些特征的方法,即特征选择和算法训练同时进行.在使用嵌入法时,我们先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据权值系数从大 ...
- 机器学习实战基础(十五):sklearn中的数据预处理和特征工程(八)特征选择 之 Filter过滤法(二) 相关性过滤
相关性过滤 方差挑选完毕之后,我们就要考虑下一个问题:相关性了. 我们希望选出与标签相关且有意义的特征,因为这样的特征能够为我们提供大量信息.如果特征与标签无关,那只会白白浪费我们的计算内存,可能还会 ...
- 机器学习实战基础(十四):sklearn中的数据预处理和特征工程(七)特征选择 之 Filter过滤法(一) 方差过滤
Filter过滤法 过滤方法通常用作预处理步骤,特征选择完全独立于任何机器学习算法.它是根据各种统计检验中的分数以及相关性的各项指标来选择特征 1 方差过滤 1.1 VarianceThreshold ...
- 机器学习实战基础(十三):sklearn中的数据预处理和特征工程(六)特征选择 feature_selection 简介
当数据预处理完成后,我们就要开始进行特征工程了. 在做特征选择之前,有三件非常重要的事:跟数据提供者开会!跟数据提供者开会!跟数据提供者开会!一定要抓住给你提供数据的人,尤其是理解业务和数据含义的人, ...
- 使用sklearn做单机特征工程
目录 1 特征工程是什么?2 数据预处理 2.1 无量纲化 2.1.1 标准化 2.1.2 区间缩放法 2.1.3 标准化与归一化的区别 2.2 对定量特征二值化 2.3 对定性特征哑编码 2.4 缺 ...
随机推荐
- CF567F/51nod2522 上下序列
CF567F/51nod2522 上下序列 考虑没有限制怎么做呢,就是从小往大加数,记录加到哪个数了还有左边有多少个数,然后这个数有两个,只能是左边放两个.右边放两个.左右各放一个.(实际上就是1,1 ...
- C#,清晨随手写
关于昨晚“猜拳”的博客 大家一定要记得,C#的书写规范是很严格的 很严格很严格很严格 简单的说 下面这样就没办法取值 但是这样就可以取值 插眼,开撸
- 解决在控制层springmvc框架发出的400状态的错误
错误场景: 错误分析: 这也是我第一次遇到这个类型的异常,400响应状态代表:客户端发出的请求中携带的参数与服务器端接受的参数类型不匹配,进一步就是说我后台的实体类中数据类型为Date,而前台传递过来 ...
- 优化JDBC开发
一.元数据 元数据:数据库.表.列的定义信息 1.DataBaseMetaData对象 getURL():返回一个String类对象,代表数据库的URL. getUserName():返回连接当前数据 ...
- Java实现斗地主发牌(Collections工具类的应用)
package com.doudou_01; import java.util.ArrayList; import java.util.Collections; import java.util.Li ...
- tomcat启动项目的时候不报错而且启动的很快
最后发现是tomcat部署项目的时候,并没有将一部分文件复制到tomcat的目录下 方法 将没有添加的目录 Finish
- linux shell 压缩解压命令
.tar 解包:tar xvf FileName.tar打包:tar cvf FileName.tar DirName(注:tar是打包,不是压缩!)———————————————.gz解压1:gun ...
- python-gevent模块实现socket大并发
服务器端:gevent_server.py 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 ...
- CocoStuff—基于Deeplab训练数据的标定工具【一、翻译】(未完)
一.CocoStuff简介 CocoStuff是一款为deeplab设计的,运行在Matlab中的语义标定工具,其标定结果和结合Deeplab训练出的结果均为mat文件格式,该项目源码已在github ...
- Kaggle 广告转化率预测比赛小结
20天的时间参加了Kaggle的 Avito Demand Prediction Challenged ,第一次参加,成绩离奖牌一步之遥,感谢各位队友,学到的东西远比成绩要丰硕得多.作为新手,希望每记 ...