title: sklearn-特征工程之特征选择

date: 2016-11-25 22:49:24

categories: skearn

tags: sklearn

抄袭/参考资料


当数据预处理完成后,我们需要选择有意义的特征输入机器学习的算法和模型进行训练。通常来说,从两个方面考虑来选择特征:

  • 特征是否发散:如果一个特征不发散,例如方差接近于0,也就是说样本在这个特征上基本上没有差异,这个特征对于样本的区分并没有什么用。
  • 特征与目标的相关性:这点比较显见,与目标相关性高的特征,应当优选选择。除方差法外,本文介绍的其他方法均从相关性考虑。

根据特征选择的形式又可以将特征选择方法分为3种:

  • Filter:过滤法,按照发散性或者相关性对各个特征进行评分,设定阈值或者待选择阈值的个数,选择特征。
  • Wrapper:包装法,根据目标函数(通常是预测效果评分),每次选择若干特征,或者排除若干特征。
  • Embedded:嵌入法,先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据系数从大到小选择特征。类似于Filter方法,但是是通过训练来确定特征的优劣。

我们使用sklearn中的feature_selection库来进行特征选择。

Filter:过滤法

方差选择法

VarianceThreshold 是特征选择中的一项基本方法。它会移除所有方差不满足阈值的特征。默认设置下,它将移除所有方差为0的特征,即那些在所有样本中数值完全相同的特征。

from sklearn.feature_selection import VarianceThreshold
# 设置方差阈值为100
sel = VarianceThreshold(threshold=100)
sel.fit_transform(X)

单变量特征选择

单变量特征选择基于单变量的统计测试来选择最佳特征。它可以看作预测模型的一项预处理。Scikit-learn将特征选择程序用包含transform 函数的对象来展现:

  • SelectKBest 移除得分前 \(k\) 名以外的所有特征
  • SelectPercentile 移除得分在用户指定百分比以后的特征
  • 对每个特征使用通用的单变量统计测试: 假正率(false positive rate) SelectFpr, 伪发现率(false discovery rate) SelectFdr, 或族系误差率 SelectFwe.
  • GenericUnivariateSelect 可以设置不同的策略来进行单变量特征选择。同时不同的选择策略也能够使用超参数寻优,从而让我们找到最佳的单变量特征选择策略。

这些作为打分函数输入的对象(同样位于feature_selection模块中),返回单变量的概率值:

相关系数法

卡方检验

互信息法


Wrapper:包装法

递归特征消除法

递归消除特征法使用一个基模型来进行多轮训练,每轮训练后,消除若干权值系数的特征,再基于新的特征集进行下一轮训练。


Embedded:嵌入法 / 基于模型进行特征选择

基于惩罚项的特征选择法

class sklearn.feature_selection.SelectFromModel(estimator,
threshold=None,
prefit=False)

使用L1范数作为惩罚项的:ref:Linear models会得到稀疏解:大部分特征对应的系数为0。当你希望减少特征的维度以用于其它分类器时,可以通过 feature_selection.SelectFromModel 来选择不为0的系数。特别指出,常用于此目的的稀疏预测模型有:

from sklearn.feature_selection import SelectFromModel
from sklearn.linear_model import Lasso lr = Lasso(alpha=10)
lr.fit(X,y) #带L1惩罚项的逻辑回归作为基模型的特征选择
model = SelectFromModel(lr, prefit=True)
model.transform(X)

基于树模型的特征选择法

基于树的预测模型(见 sklearn.tree 模块,森林见 sklearn.ensemble 模块)能够用来计算特征的重要程度,因此能用来去除不相关的特征(结合 sklearn.feature_selection.SelectFromModel )

from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import GradientBoostingRegressor gbdt = GradientBoostingRegressor()
gbdt.fit(X,y) #GBDT作为基模型的特征选择
model = SelectFromModel(gbdt, prefit=True)
model.transform(X)

sklearn-特征工程之特征选择的更多相关文章

  1. sklearn—特征工程

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  2. sklearn特征工程

    目录 一.    特征工程是什么?    2 ①特征使用方案    3 ②特征获取方案    4 ③特征处理    4 1.    特征清洗    4 2.    数据预处理    4 3.    特 ...

  3. sklearn特征工程总结

    转自: http://www.cnblogs.com/jasonfreak/p/5448385.html https://www.zhihu.com/question/28641663/answer/ ...

  4. Machine Learning-特征工程之特征选择

    特征工程之特征选择 目录 简介 1 Filter(过滤式选择) 1.1 移除低方差特征(variance threshold) 1.2 信息增益(information gain) 1.3 单变量特征 ...

  5. 机器学习实战基础(十八):sklearn中的数据预处理和特征工程(十一)特征选择 之 Wrapper包装法

    Wrapper包装法 包装法也是一个特征选择和算法训练同时进行的方法,与嵌入法十分相似,它也是依赖于算法自身的选择,比如coef_属性或feature_importances_属性来完成特征选择.但不 ...

  6. 机器学习实战基础(十七):sklearn中的数据预处理和特征工程(十)特征选择 之 Embedded嵌入法

    Embedded嵌入法 嵌入法是一种让算法自己决定使用哪些特征的方法,即特征选择和算法训练同时进行.在使用嵌入法时,我们先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据权值系数从大 ...

  7. 机器学习实战基础(十五):sklearn中的数据预处理和特征工程(八)特征选择 之 Filter过滤法(二) 相关性过滤

    相关性过滤 方差挑选完毕之后,我们就要考虑下一个问题:相关性了. 我们希望选出与标签相关且有意义的特征,因为这样的特征能够为我们提供大量信息.如果特征与标签无关,那只会白白浪费我们的计算内存,可能还会 ...

  8. 机器学习实战基础(十四):sklearn中的数据预处理和特征工程(七)特征选择 之 Filter过滤法(一) 方差过滤

    Filter过滤法 过滤方法通常用作预处理步骤,特征选择完全独立于任何机器学习算法.它是根据各种统计检验中的分数以及相关性的各项指标来选择特征 1 方差过滤 1.1 VarianceThreshold ...

  9. 机器学习实战基础(十三):sklearn中的数据预处理和特征工程(六)特征选择 feature_selection 简介

    当数据预处理完成后,我们就要开始进行特征工程了. 在做特征选择之前,有三件非常重要的事:跟数据提供者开会!跟数据提供者开会!跟数据提供者开会!一定要抓住给你提供数据的人,尤其是理解业务和数据含义的人, ...

  10. 使用sklearn做单机特征工程

    目录 1 特征工程是什么?2 数据预处理 2.1 无量纲化 2.1.1 标准化 2.1.2 区间缩放法 2.1.3 标准化与归一化的区别 2.2 对定量特征二值化 2.3 对定性特征哑编码 2.4 缺 ...

随机推荐

  1. centos中如何添加环境变量

    在Linux CentOS系统上安装完php和MySQL后,为了使用方便,需要将php和mysql命令加到系统命令中,如果在没有添加到环境变量之前,执行“php -v”命令查看当前php版本信息时时, ...

  2. loj558 「Antileaf's Round」我们的CPU遭到攻击

    考完了可以发题解了. 做法是link-cut tree维护子树信息,并不需要维护黑树白树那些的. 下面是一条重链: 如果4是根的话,那么在splay上是这样的: 在splay中,子树的信息都已经计算完 ...

  3. Redis之数据类型大全

    一:String类型 1.set方法:设置key对应的值为string类型的value,如果该key已经存在,则覆盖key对应的value值.所以在redis中key只能有一个. 127.0.0.1: ...

  4. Springboot日记——核心编码篇

    背景吐槽:想要让自己进阶一下,一定要有个可以拿出来秀的东西,所以要尝试写一个属于自己的网站或者平台.因此,我大概的看了一下springboot+Mybatis-plus+... 框架介绍 通常 SSM ...

  5. JMeter的__threadGroupName使用注意事项

    JMeter从4.1版本开始引入了一个新函数"${__threadGroupName}",这个函数的作用是返回当前线程组的名字.${__threadGroupName}的用途也较为 ...

  6. Netty源码分析第5章(ByteBuf)---->第5节: directArena分配缓冲区概述

    Netty源码分析第五章: ByteBuf 第五节: directArena分配缓冲区概述 上一小节简单分析了PooledByteBufAllocator中, 线程局部缓存和arean的相关逻辑, 这 ...

  7. Gaussian Models

    Warming Up Before we talk about multivariate Gaussian, let's first review univariate Gaussian, which ...

  8. windows 7 php 7.1 命令行 执行 中文文件名 的PHP文件

    在PHP5.6时代直接执行 php.exe  文件.php 是没有的这个问题 在win下的命令行中 活动代码页命令 chcp 修改 chcp 936  //gbk chcp 65001 //utf-8 ...

  9. Ubuntu16.04Server版离线安装Nginx1.8.1+Mysql5.7.23+Python3.6.2

    nginx1.8.1 1.安装前准备工作 1.1.检查系统版本,确认源码编译所依赖的环境,提前下载好压缩包. 整个环境都是使用root权限安装,系统版本为server版的ubuntu16.04.4 r ...

  10. PHP 抽象类和接口区别

    php中抽象类和接口的区别 1) 概念 面向对象的三大概念:封装,继承,多态 把属性和方法封装起来就是类.      一个类的属性和方法被另外的类复制就是继承,PHP里面的任何类都可以被继承,被继承的 ...