树链剖分+线段树

思路

貌似题解里没有树链剖分和线段树的,贡献一发。

首先明确题目要求:一辆车走某条路从x城到y城的边权最小值

我们把要求分开来看:

  1. 从x城到y城:我们需要走的路径将两点联通

  2. 边权最小值:我们要找这条路上的限重最小值

如果你是一个货车司机(而且题目还告诉你你的汽车走多远不要油),你肯定想多运一些货物,也就要求联通两点的权值尽可能大。

又要保证联通,又要保证权值尽可能大,没错,我们需要用到最小生成树。

(如果还不理解,你可以设想一下,有两条都可以从a到b,一条路限重10,一条路限重100,你一定会选择第二条路;我们再推广一下,如果两条路都能联通还未联通的a、b两个联通块(你可以认为a、b是两个岛,两条路是跨岛大桥),一条路限重10,一条路限重100,你还是一定会选择第二条路)

最小生成树的方法:先按边权大小排序,利用并查集判断两块是否联通,生成一个新的图


好,现在第一个问题解决了:你运货的最大路径方案一定在新的图(树)上了,怎么求两点之间权值最小的呢?

因为这是一棵树,所以两点之间路径唯一,可是直接搜索时间又肯定承受不住,我们这时就可以采用树链剖分了

这是类似树剖板题的题,就有提到求某两点的最值问题

值得一提的是:树剖+线段树只是支持修改和查询点权的,这时我们就需要知道怎么将边权转换为点权

边权与点权之间的转换

随便在网上找了个图:我们这样实现边权与点权之间的转换:将根节点的点权设为INF,然后所有边权下放到连接的点(所有边权往下挪到了点里,由于根节点值为INF不影响min的计算(同理,查询最大值就设为-INF))

然后直接查询就好啦!

怎么可能?!

刚开始的时候,我转换完后就直接像树剖板题那样求最值了,结果只有10分,那么问题出在哪呢?

我们看一下这个图(黑色是边权,黄色是转换后的点权):

若想查询A点到B点的最值,我们会发现,按普通树剖的查询方法,我们会访问20那个点(5-20-19-8),然而应该访问的路径是5-19-8,所以我们要对查询函数做一些修改,“绕开那些点”

void getans(int x,int y){
if(findfather(x) != findfather(y)){
printf("-1\n");
return ;
}
int ans = INF;
while(top[x] != top[y]){
if(dep[top[x]] < dep[top[y]])swap(x,y);
ans = min(ans,query(1,pos[top[x]],pos[x]));
x = fa[top[x]];
}
if(x == y){
printf("%d\n",ans);//绕开
return ;
}
if(dep[x] > dep[y])swap(x,y);
ans = min(ans,query(1,pos[x] + 1,pos[y]));//+1绕开
printf("%d\n",ans);
}

AC代码

#include<iostream>
#include<vector>
#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int RD(){
int out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const int maxn = 500190,INF = 999999999;
int num,nr,nume,na,cnt,numt;
int head[maxn];
struct Node{
int v,nxt,dis;
}E[maxn * 2];
void add(int u,int v,int dis){
E[++nume].nxt = head[u];
E[nume].v = v;
E[nume].dis = dis;
head[u] = nume;
}
struct R{
int u,v,dis;
}I[maxn];
bool cmp(R a,R b){
return a.dis > b.dis;
}
int father[maxn];
int findfather(int v){
if(father[v] == v)return v;
return father[v] = findfather(father[v]);
}
void Union(int a,int b){
int faA = findfather(a);
int faB = findfather(b);
if(faA != faB)father[faA] = faB;
}
void buildG(){//建最小生成树
for(int i = 1;i <= nr;i++){
if(findfather(I[i].u) != findfather(I[i].v)){
add(I[i].u,I[i].v,I[i].dis);
add(I[i].v,I[i].u,I[i].dis);
Union(I[i].u,I[i].v);
}
}
}
int dep[maxn],fa[maxn],wson[maxn],top[maxn],size[maxn],pos[maxn],ori[maxn];
int val[maxn];
int vis[maxn];
void dfs1(int id,int F){
vis[id] = true;
numt++;
size[id] = 1;
for(int i = head[id];i;i = E[i].nxt){
int v = E[i].v;
if(v == F)continue;
dep[v] = dep[id] + 1;
fa[v] = id;
val[v] = E[i].dis;
dfs1(v,id);
size[id] += size[v];
if(size[v] > size[wson[id]]){
wson[id] = v;
}
}
}
void dfs2(int id,int TP){
top[id] = TP;
pos[id] = ++cnt;
ori[cnt] = id;
if(!wson[id])return ;
dfs2(wson[id],TP);
for(int i = head[id];i;i = E[i].nxt){
int v = E[i].v;
if(v == fa[id] || v == wson[id])continue;
dfs2(v,v);
}
}
#define lid (id << 1)
#define rid (id << 1) | 1
struct sag_tree{
int l,r;
int min;
int lazy;
}tree[maxn << 2];
void build(int id,int l,int r){
tree[id].l = l;
tree[id].r = r;
if(l == r){
tree[id].min = val[ori[r]];
return ;
}
int mid = l + r >> 1;
build(lid,l,mid);
build(rid,mid + 1,r);
tree[id].min = min(tree[lid].min,tree[rid].min);
}
int query(int id,int l,int r){
if(tree[id].l == l && tree[id].r == r){
return tree[id].min;
}
int mid = tree[id].l + tree[id].r >> 1;
if(mid < l){
return query(rid,l,r);
}
else if(mid >= r){
return query(lid,l,r);
}
else{
return min(query(lid,l,mid),query(rid,mid + 1,r));
}
}
void getans(int x,int y){
if(findfather(x) != findfather(y)){
printf("-1\n");
return ;
}
int ans = INF;
while(top[x] != top[y]){
if(dep[top[x]] < dep[top[y]])swap(x,y);
ans = min(ans,query(1,pos[top[x]],pos[x]));
x = fa[top[x]];
}
if(x == y){
printf("%d\n",ans);
return ;
}
if(dep[x] > dep[y])swap(x,y);
ans = min(ans,query(1,pos[x] + 1,pos[y]));
printf("%d\n",ans);
}
int main(){
num = RD();nr = RD();
for(int i = 1;i <= num;i++){
father[i] = i;
}
for(int i = 1;i <= nr;i++){
I[i].u = RD();
I[i].v = RD();
I[i].dis = RD();
}
sort(I + 1,I + 1 + nr,cmp);
buildG();
int s = 1;
while(s <= num){
if(vis[s] == false){
dep[s] = 1;
val[s] = INF;
dfs1(s,-1);
dfs2(s,s);
}
s++;
}
build(1,1,numt);
na = RD();
int u,v;
for(int i = 1;i <= na;i++){
u = RD();v = RD();
getans(u,v);
}
return 0;
}

最后,感谢大佬的帮助

大佬

广告

题解 P1967 【货车运输】的更多相关文章

  1. 题解 P1967 货车运输

    题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能 ...

  2. luogu题解P1967货车运输--树链剖分

    题目链接 https://www.luogu.org/problemnew/show/P1967 分析 NOIp的一道裸题,直接在最大生成树上剖分取最小值一下就完事了,非常好写,常数也比较小,然而题解 ...

  3. 洛谷 P1967 货车运输

    洛谷 P1967 货车运输 题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物, 司机们想知道每辆车在 ...

  4. P1967 货车运输

    P1967 货车运输最大生成树+lca+并查集 #include<iostream> #include<cstdio> #include<queue> #inclu ...

  5. 洛谷P3379lca,HDU2586,洛谷P1967货车运输,倍增lca,树上倍增

    倍增lca板子洛谷P3379 #include<cstdio> struct E { int to,next; }e[]; ],anc[][],log2n,deep[],n,m,s,ne; ...

  6. Luogu P1967 货车运输(Kruskal重构树)

    P1967 货车运输 题面 题目描述 \(A\) 国有 \(n\) 座城市,编号从 \(1\) 到 \(n\) ,城市之间有 \(m\) 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 \ ...

  7. 【杂题总汇】NOIP2013(洛谷P1967) 货车运输

    [洛谷P1967] 货车运输 重做NOIP提高组ing... +传送门-洛谷P1967+ ◇ 题目(copy from 洛谷) 题目描述 A国有n座城市,编号从1到n,城市之间有m条双向道路.每一条道 ...

  8. 洛谷 P1967 货车运输(克鲁斯卡尔重构树)

    题目描述 AAA国有nn n座城市,编号从 11 1到n nn,城市之间有 mmm 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 qqq 辆货车在运输货物, 司机们想知道每辆车在不超过车 ...

  9. P1967 货车运输(倍增LCA,生成树)

    题目链接: https://www.luogu.org/problemnew/show/P1967 题目描述 A国有n座城市,编号从 1到n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制, ...

  10. 洛谷 P1967 货车运输 Label: 倍增LCA && 最小瓶颈路

    题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最多 ...

随机推荐

  1. spring中的@component

    @component (把普通pojo实例化到spring容器中,相当于配置文件中的 <bean id="" class=""/>) 泛指各种组件, ...

  2. Daily scrum 2015.10.19

    这周是我们团队项目开始的第一周.我们的团队项目是“北航社团平台”,一个致力于打造北航社团资讯整合.社团工作服务与社团商品销售的一站式网络平台. 一.会议内容 1. 总体分工,江昊同学担任项目PM,王若 ...

  3. fullPage全屏高度自适应

    <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...

  4. 2018软工实践—Alpha冲刺(10)

    队名 火箭少男100 组长博客 林燊大哥 作业博客 Alpha 冲鸭鸭鸭鸭鸭鸭鸭鸭鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调各成员之间的工作 测试整体软件 展示GitHub当 ...

  5. object-oriented second work

    work request github enter 这次作业做过,不过以前是用数组写的,当我用双向链表写这题时,刚交上去一直出错,后面我又改了改,最后一点一致凑,后面有同学告诉我在构建链表后要判断链表 ...

  6. 关于mybatis的思考(1)——mybatis的使用实例

    架构分析 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架. MyBatis 消除了几乎所有的 JDBC 代码和参数的手工设置以及对结果集的检索.MyBatis 可以使用简 ...

  7. 转 JS模块化简单实现

    git示例地址:https://github.com/wufenfen/requireJS-Demo.git

  8. syntax error:unexpected end of file

    将window上编辑的xxy1.sh脚本上传到linux上,并执行的时候提示 xxy1.sh: line 17: syntax error: unexpected end of file 但是通过ca ...

  9. DTCping 的简单使用与排错

    1. 工具下载路径 https://support.microsoft.com/zh-cn/help/918331/how-to-troubleshoot-connectivity-issues-in ...

  10. ANR基础

    转自:http://blog.sina.com.cn/s/blog_c0de2be70102wd1k.html 1.ANR basic knowledge ANR分类: Key Dispatch Ti ...