题意:给定n, k,求出∑ni=1(k mod i)

思路:由于n和k都很大,直接暴力是行不通的,然后在纸上画了一些情况,就发现其实对于k/i相同的那些项是形成等差数列的,于是就可以把整个序列进行拆分成[k,k/2],[k/2, k/3], [k/3,k/4]...k[k/a, k/b]这样的等差数列,利用大步小步算法思想,这里a枚举到sqrt(k)就可以了,这样就还剩下[1,k/a]的序列需要去枚举,总时间复杂度为O(sqrt(k)),然后注意对于n大于k的情况,n超过k的部分全是等于k,为(n - k) * k,这样把所有部分加起来就是答案

转载至:https://blog.csdn.net/accelerator_/article/details/36949761

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff; int main()
{
LL k, n;
while(cin>> n >> k)
{
LL res = ;
if(n > k) res = (n-k) * k;
LL a = sqrt(k), b = k/a;
for(int i=a; i>; i--)
{
LL a0 = k/i, an = k/(i-);
if(a0 > n) break; // 如果下限大于n 结束循环
if(an > n) an = n; // 如果上限大于n 缩小区间
res += (k % (a0+) + k % an) * (an - a0) / ; //求和公式
}
for(int i=; i <= n && i <= b; i++)
res += k%i;
cout << res <<endl; } return ;
}

Joseph's Problem UVALive - 3521(等差数列的应用)的更多相关文章

  1. UVa 1363 (数论 数列求和) Joseph's Problem

    题意: 给出n, k,求 分析: 假设,则k mod (i+1) = k - (i+1)*p = k - i*p - p = k mod i - p 则对于某个区间,i∈[l, r],k/i的整数部分 ...

  2. UVA 1363 Joseph's Problem 找规律+推导 给定n,k;求k%[1,n]的和。

    /** 题目:Joseph's Problem 链接:https://vjudge.net/problem/UVA-1363 题意:给定n,k;求k%[1,n]的和. 思路: 没想出来,看了lrj的想 ...

  3. A Boring Problem UVALive - 7676 (二项式定理+前缀和)

    题目链接: I - A Boring Problem UVALive - 7676 题目大意:就是求给定的式子. 学习的网址:https://blog.csdn.net/weixin_37517391 ...

  4. UVALive - 3521 Joseph's Problem (整除分块)

    给定$n,k$$(1\leqslant n,k\leqslant 10^9)$,计算$\sum\limits _{i=1}^nk\: mod\:i$ 通过观察易发现$k\%i=k-\left \lfl ...

  5. LA 3521 Joseph's Problem

    题意:给你正整数n和k,然后计算从i到n k%i的和: 思路:如果n小于1000000,直接暴力计算,然后大于1000000的情况,然后在讨论n和k的大小,根据k%i的情况,你会发现规律,是多个等差数 ...

  6. POJ2800:Joseph's Problem(等差数列)

    传送门 题意 计算 \(\sum_{i=1}^n(kmodi)\) 分析 1.n>k 直接输出k*(n-k) 2.n<=k 我们发现k/i相同的k%i构成一个等差数列,那么我们从k/i-& ...

  7. Problem J. Joseph’s Problem 约瑟夫问题--余数之和

    链接:https://vjudge.net/problem/UVA-1363 题意:给出n  k,当 i 属于 1~n 时 ,求解 n% i 的和 n 和 k 的范围都是 1 到 10^9; 商相同 ...

  8. UVa 1363 - Joseph's Problem(数论)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. UVA 1363 Joseph's Problem

    https://vjudge.net/problem/UVA-1363 n 题意:求 Σ  k%i i=1 除法分块 如果 k/i==k/(i+1)=p 那么 k%(i+1)=k-(i+1)*p= k ...

随机推荐

  1. 虚拟机下安装cad2006和南方cass7.0

    本人电脑是win10系统,装了一个cad2014,cad2014没有与之匹配的cass版本,但cad2014也有用途,于是上网找两个cad版本都安装的教程,发现一个比较好的办法就是安装虚拟机,在虚拟机 ...

  2. [PLC]ST语言五:STL/RET/CMP/ZCP

    一:STL/RET/CMP/ZCP 说明:简单的顺控指令不做其他说明. 控制要求:无 编程梯形图: 结构化编程ST语言: (*步进指令STL(EN,s);*) SET(M8002,S3); STL(T ...

  3. appium自动化---activity获取

    方法一:appt查询activity获取 aapt dump badging <路径/包名> | find "launchable-activity" 方法二: 1.打 ...

  4. 【Shader】这是一篇记录随笔,我要开始学Shader了!

    背景: 前天学校有场招聘会,转了一圈只看到一家和unity有关的公司,还是做VR游戏的,然后HR也很好说话.和我说话的HR正好是做UnityVR方面的,聊了会受益匪浅,自己就像是找到了方向似的,突然很 ...

  5. python 基础篇01

    一.python介绍年的圣诞节期间,吉多亿个文件的上传和下载千万张照片被分享,全部用倍年,为了打发圣诞节假期,年,第一个Python编译器诞生.它是用C语言实现的,并能够调用C语言的库文件.从一出生, ...

  6. GO/GOLANG程序员笔记大全

    ---------------------------------------- go 并发 // 注解:go 语言天生为程序并发所设计,可以说go的强项就是在cpu并发上的处理. // go 语言层 ...

  7. Vue 入门之组件化开发

    Vue 入门之组件化开发 组件其实就是一个拥有样式.动画.js 逻辑.HTML 结构的综合块.前端组件化确实让大的前端团队更高效的开发前端项目.而作为前端比较流行的框架之一,Vue 的组件和也做的非常 ...

  8. First Scrum Meeting (2015/10/18)

    会议是在昨晚进行的,本来早就应该写博了,可惜今天校园网炸个不停= =.刚修好就赶紧来发博客. 会议基本要素 会议主题:爬虫项目的核心技术讨论以及项目初期的工作分配 会议时间:2015.10.18 19 ...

  9. 20135234mqy 实验三:敏捷开发与XP实践

    实     验    报     告 课程:Java 班级: 1352    姓名:mqy    学号:20135234 成绩:              指导教师:娄嘉鹏    实验日期:2015. ...

  10. apm server

    目录 1.apm的tomcat启动失败解决方法 2.apm的mysql修改root密码的方法 内容: 1.apm的tomcat启动失败解决方法 APMServ5.2.6 无法启动Apache的一个问题 ...