【bzoj1833】 ZJOI2010—count 数字计数
http://www.lydsy.com/JudgeOnline/problem.php?id=1833 (题目链接)
题意
求在${[a,b]}$范围内整数中,每个数码出现的次数。
Solution
数位dp。
${t}$数组取到最大数时表示每一位是多少。
${f[i][j][k]}$表示第${i}$位,这一位上的数为${j}$,数字${k}$的出现次数。转移:$${f[i][j][k]=\sum_{l=0}^9f[i-1][l][k]+10^(i-1)}$$
${g[i][k]}$表示第${i}$位,这一位上的数取到最大时数字${k}$的出现次数。转移:$${g[i][k]=\sum_{j=0}^{t[i-1]-1}f[i-1][j][k]+g[i-1][k]}$$
当然,如果${g[i][t[i]]}$还要再加上${t[i]}$对方案的贡献。
细节
感觉细节还是蛮多的,还是不够熟练啊
代码
// bzoj1833
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<ctime>
#define LL long long
#define inf (1ll<<30)
#define MOD 1000000007
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; LL a[2],t[20],f[20][10][10],g[20][10],ans[10];
int n; void solve(int p) {
memset(f,0,sizeof(f));memset(g,0,sizeof(g));
for (n=0;a[p];a[p]/=10) t[++n]=a[p]%10;
for (int i=0;i<10;i++) f[1][i][i]=1;
LL bin=1,bb=0;
g[1][t[1]]=1;
for (int i=2;i<=n;i++) {
bb+=bin*t[i-1],bin*=10;
for (int j=0;j<10;j++) {
for (int k=0;k<10;k++)
for (int l=0;l<10;l++) f[i][j][k]+=f[i-1][l][k];
f[i][j][j]+=bin;
}
for (int k=0;k<10;k++) {
g[i][k]=g[i-1][k];
for (int j=0;j<t[i-1];j++) g[i][k]+=f[i-1][j][k];
}
g[i][t[i]]+=bb+1;
}
int q=p ? 1 : -1;
for (int i=1;i<n;i++)
for (int j=1;j<10;j++)
for (int k=0;k<10;k++)
ans[k]+=f[i][j][k]*q;
for (int j=1;j<t[n];j++)
for (int k=0;k<10;k++)
ans[k]+=f[n][j][k]*q;
for (int k=0;k<10;k++)
ans[k]+=g[n][k]*q;
}
int main() {
scanf("%lld%lld",&a[0],&a[1]);a[0]--;
solve(0);solve(1);
for (int i=0;i<10;i++) {
printf("%lld",ans[i]);
if (i<9) printf(" ");
}
return 0;
}
【bzoj1833】 ZJOI2010—count 数字计数的更多相关文章
- [BZOJ1833][ZJOI2010]count 数字计数
[BZOJ1833][ZJOI2010]count 数字计数 试题描述 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入 输入文件中仅包含一行两个整数a ...
- BZOJ1833 ZJOI2010 count 数字计数 【数位DP】
BZOJ1833 ZJOI2010 count 数字计数 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包 ...
- bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)
1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...
- [BZOJ1833][ZJOI2010]Count数字计数(DP)
数位DP学傻了,怎么写最后都写不下去了. 这题严格上来说应该不属于数位DP?只是普通DP加上一些统计上的判断吧. 首先复杂度只与数的位数$\omega$有关,所以怎么挥霍都不会超. f[i][j][k ...
- bzoj1833: [ZJOI2010]count 数字计数 数位dp
bzoj1833 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. O ...
- bzoj1833: [ZJOI2010]count 数字计数 && codevs1359 数字计数
bzoj1833 codevs1359 这道题也是道数位dp 因为0有前导0这一说卡了很久 最后发现用所有位数减1~9的位数就okay.....orzczl大爷 其他就跟51nod那道统计1出现次数一 ...
- [bzoj1833][ZJOI2010]count 数字计数——数位dp
题目: (传送门)[http://www.lydsy.com/JudgeOnline/problem.php?id=1833] 题解: 第一次接触数位dp,真的是恶心. 首先翻阅了很多很多一维dp,因 ...
- BZOJ1833 [ZJOI2010]count 数字计数 【数学 Or 数位dp】
题目 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入格式 输入文件中仅包含一行两个整数a.b,含义如上所述. 输出格式 输出文件中包含一行10个整数, ...
- bzoj1833: [ZJOI2010]count 数字计数&&USACO37 Cow Queueing 数数的梦(数位DP)
难受啊,怎么又遇到我不会的题了(捂脸) 如题,这是一道数位DP,随便找了个博客居然就是我们大YZ的……果然nb,然后就是改改模版++注释就好的了,直接看注释吧,就是用1~B - 1~A-1而已,枚举全 ...
- 【数位dp】bzoj1833: [ZJOI2010]count 数字计数
数位dp姿势一直很差啊:顺便庆祝一下1A Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a ...
随机推荐
- FileZilla-FTP连接失败
状态: 已登录状态: 读取“/”的目录列表...命令: CWD /响应: 250 CWD successful. "/" is current directory.命令: TYPE ...
- whoami,who,w命令详解
http://www.voidcn.com/blog/wszzdanm/article/p-6145895.html 命令功能:显示登录用户的信息 命令格式: 常用选项: 举例: w 显示已经登录的用 ...
- HDU 1556 Color the ball (一维树状数组,区间更新,单点查询)
中文题,题意就不说了 一开始接触树状数组时,只知道“单点更新,区间求和”的功能,没想到还有“区间更新,单点查询”的作用. 树状数组有两种用途(以一维树状数组举例): 1.单点更新,区间查询(即求和) ...
- to_char
to_date(to_char(to_date(#{conds.currentTime,jdbcType=VARCHAR},'YYYY-MM-DD hh24:mi:ss'),'hh24:mi:ss') ...
- 面向对象OO第5-7次作业总结
面向对象OO第5-7次作业总结 学习OO七周了,深切的感受到了这门课程的不友好.前三次作业能够算是勉强地通过了,但是从第五次作业开始就完全GG了.这三次作业,从多线程电梯开始,然后文件监控,然后到出租 ...
- 奔跑吧DKY——团队Scrum冲刺阶段-Day 4
今日完成任务 谭鑫:主要解决之前存在的控件不灵敏问题,导致界面跳转不顺利. 黄宇塘:制作新的游戏背景图,对主界面图进行调整. 赵晓海:主要解决之前存在的控件不灵敏问题,导致界面跳转不顺利. 方艺雯:制 ...
- 手机端学习助手的说明书需求以及团队PM选择
1.产品的背景 课堂上知识容量大.密度高,学生不能立刻掌握所学知识点,同时,网上资料冗杂繁复,指向性不强,导致学生不能高效的学习,为了充分利用学生的课余时间,培养学生自学能力,辅助老师教学,我们小组希 ...
- Prim's Algorithm & Kruskal's algorithm
1. Problem These two algorithm are all used to find a minimum spanning tree for a weighted undirecte ...
- 30行js让你的rem弹性布局适配所有分辨率(含竖屏适配)(转载)
用rem来实现移动端的弹性布局是个好主意!用法如下: CSS @media only screen and (max-width: 320px), only screen and (max-devic ...
- 简单复利计算c语言实现
#include<stdio.h>#include<math.h>float i; //利率 float p; //期初金额 float F; //未来值 int n; //期 ...