【bzoj1833】 ZJOI2010—count 数字计数
http://www.lydsy.com/JudgeOnline/problem.php?id=1833 (题目链接)
题意
求在${[a,b]}$范围内整数中,每个数码出现的次数。
Solution
数位dp。
${t}$数组取到最大数时表示每一位是多少。
${f[i][j][k]}$表示第${i}$位,这一位上的数为${j}$,数字${k}$的出现次数。转移:$${f[i][j][k]=\sum_{l=0}^9f[i-1][l][k]+10^(i-1)}$$
${g[i][k]}$表示第${i}$位,这一位上的数取到最大时数字${k}$的出现次数。转移:$${g[i][k]=\sum_{j=0}^{t[i-1]-1}f[i-1][j][k]+g[i-1][k]}$$
当然,如果${g[i][t[i]]}$还要再加上${t[i]}$对方案的贡献。
细节
感觉细节还是蛮多的,还是不够熟练啊
代码
// bzoj1833
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<ctime>
#define LL long long
#define inf (1ll<<30)
#define MOD 1000000007
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; LL a[2],t[20],f[20][10][10],g[20][10],ans[10];
int n; void solve(int p) {
memset(f,0,sizeof(f));memset(g,0,sizeof(g));
for (n=0;a[p];a[p]/=10) t[++n]=a[p]%10;
for (int i=0;i<10;i++) f[1][i][i]=1;
LL bin=1,bb=0;
g[1][t[1]]=1;
for (int i=2;i<=n;i++) {
bb+=bin*t[i-1],bin*=10;
for (int j=0;j<10;j++) {
for (int k=0;k<10;k++)
for (int l=0;l<10;l++) f[i][j][k]+=f[i-1][l][k];
f[i][j][j]+=bin;
}
for (int k=0;k<10;k++) {
g[i][k]=g[i-1][k];
for (int j=0;j<t[i-1];j++) g[i][k]+=f[i-1][j][k];
}
g[i][t[i]]+=bb+1;
}
int q=p ? 1 : -1;
for (int i=1;i<n;i++)
for (int j=1;j<10;j++)
for (int k=0;k<10;k++)
ans[k]+=f[i][j][k]*q;
for (int j=1;j<t[n];j++)
for (int k=0;k<10;k++)
ans[k]+=f[n][j][k]*q;
for (int k=0;k<10;k++)
ans[k]+=g[n][k]*q;
}
int main() {
scanf("%lld%lld",&a[0],&a[1]);a[0]--;
solve(0);solve(1);
for (int i=0;i<10;i++) {
printf("%lld",ans[i]);
if (i<9) printf(" ");
}
return 0;
}
【bzoj1833】 ZJOI2010—count 数字计数的更多相关文章
- [BZOJ1833][ZJOI2010]count 数字计数
[BZOJ1833][ZJOI2010]count 数字计数 试题描述 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入 输入文件中仅包含一行两个整数a ...
- BZOJ1833 ZJOI2010 count 数字计数 【数位DP】
BZOJ1833 ZJOI2010 count 数字计数 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包 ...
- bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)
1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...
- [BZOJ1833][ZJOI2010]Count数字计数(DP)
数位DP学傻了,怎么写最后都写不下去了. 这题严格上来说应该不属于数位DP?只是普通DP加上一些统计上的判断吧. 首先复杂度只与数的位数$\omega$有关,所以怎么挥霍都不会超. f[i][j][k ...
- bzoj1833: [ZJOI2010]count 数字计数 数位dp
bzoj1833 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. O ...
- bzoj1833: [ZJOI2010]count 数字计数 && codevs1359 数字计数
bzoj1833 codevs1359 这道题也是道数位dp 因为0有前导0这一说卡了很久 最后发现用所有位数减1~9的位数就okay.....orzczl大爷 其他就跟51nod那道统计1出现次数一 ...
- [bzoj1833][ZJOI2010]count 数字计数——数位dp
题目: (传送门)[http://www.lydsy.com/JudgeOnline/problem.php?id=1833] 题解: 第一次接触数位dp,真的是恶心. 首先翻阅了很多很多一维dp,因 ...
- BZOJ1833 [ZJOI2010]count 数字计数 【数学 Or 数位dp】
题目 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入格式 输入文件中仅包含一行两个整数a.b,含义如上所述. 输出格式 输出文件中包含一行10个整数, ...
- bzoj1833: [ZJOI2010]count 数字计数&&USACO37 Cow Queueing 数数的梦(数位DP)
难受啊,怎么又遇到我不会的题了(捂脸) 如题,这是一道数位DP,随便找了个博客居然就是我们大YZ的……果然nb,然后就是改改模版++注释就好的了,直接看注释吧,就是用1~B - 1~A-1而已,枚举全 ...
- 【数位dp】bzoj1833: [ZJOI2010]count 数字计数
数位dp姿势一直很差啊:顺便庆祝一下1A Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a ...
随机推荐
- 关于java学习中的一些易错点(基础篇)
由JVM来负责Java程序在该系统中的运行,不同的操作系统需要安装不同的JVM,这样Java程序只需要跟JVM打交道,底层的操作由JVM去执行. JRE(Java Runtime Environmen ...
- RAID系列技术详解
1.RAID 0 RAID 0是把n个物理磁盘虚拟成一个逻辑磁盘,即形成RAID 0的各个物理磁盘会组成一个逻辑上连续,物理上也连续的虚拟磁盘.一级磁盘控制器(指使用这个虚拟磁盘的控制器,如果某台主机 ...
- python基础知识-11-函数装饰器
python其他知识目录 1.装饰器学习前热身准备 1.1装饰器简介 1.2装饰器热身分析 ) def func(): pass v1 = v2 = func #将函数名赋予一个变量,就和变量赋值是同 ...
- iOS 静态库 与 demo 联合调试
在修复bug或者开发静态库需要调试,这个时候需要把工程中的.framework和资源bundle文件都替换为静态库原工程文件 首先需要确保静态库工程文件没有打开,Xcode不允许在两个地方同时打开同一 ...
- BugPhobia开发篇章:Scurm Meeting-更新至0x03
0x01 :目录与摘要 If you weeped for the missing sunset, you would miss all the shining stars 索引 提纲 整理与更新记录 ...
- Alpha阶段产品功能说明
先展示一下我们的功能流程图吧~ 一.学生用户 1. 学生登陆注册 BuaaClubs是北航所有在校生都可以注册登录的网站. 登陆界面是这样哒~ 2. 浏览报名活动 同学们可以在这个网站上查看所有社团发 ...
- so easy, too happy
一.预估与实际 PSP2.1 Personal Software Process Stages 预估耗时(分钟) 实际耗时(分钟) Planning 计划 • Estimate • 估计这个任务需要多 ...
- Chapter 3 软件项目管理
软件项目具有产品的不可见性.项目的高度不确定性.软件过程的多变化性.软件人员的高流动性的显著特征.有效的软件项目管理集中于人员.产品.过程和项目四个方面.软件项目的生命周期有项目启动.项目规划.项目实 ...
- beta冲刺(5/7)
目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:恺琳 组员6:翟丹丹 组员7:何家伟 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4 ...
- SQL Server 2008 存储过程示例
出处:http://www.jb51.net/article/54730.htm --有输入参数的存储过程-- create proc GetComment (@commentid int) as s ...