题目描述

近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了。可是A国上层现在还犹豫不决,到底该把哪些城市作为保护对象呢?又由于A国的经费有限,所以希望你能帮忙完成如下的一个任务:

  1. 给出你所有的A国城市坐标

  2. A国上层经过讨论,考虑到经济问题,决定取消对i城市的保护,也就是说i城市不需要在防线内了

  3. A国上层询问对于剩下要保护的城市,修建防线的总经费最少是多少

你需要对每次询问作出回答。注意单位1长度的防线花费为1。

A国的地形是这样的,形如下图,x轴是一条河流,相当于一条天然防线,不需要你再修建

A国总是有两个城市在河边,一个点是(0,0),一个点是(n,0),其余所有点的横坐标均大于0小于n,纵坐标均大于0。A国有一个不在(0,0)和(n,0)的首都。(0,0),(n,0)和首都这三个城市是一定需要保护的。

说明

数据范围:

30%的数据m<=1000,q<=1000

100%的数据m<=100000,q<=200000,n>1

所有点的坐标范围均在10000以内, 数据保证没有重点

题解

要动态维护一个凸包。还要维护删除操作?

删除麻烦,可以离线,把删除变成插入操作。

一切就简单又自然了。

插入一个点t,就要找到凸包上的第一个大于等于横坐标x的点p,和第一个小于x的点q。即后继前驱。

题目很善良,河边点不会删除,所以一定在凸包上,不会有什么边界的锅。

如果在凸包里面那么就直接返回,怎么判断?

如果q和p的斜率在t和p的斜率,t和q的斜率大小之间的话,那么这个点一定不在凸包上。画图可以理解。

反之就一定在凸包上。

然后开始弹出点。不断向右比较斜率,再不断向左比较斜率。

最后把t加入凸包。

删除点的时候,实时更新防线的长度。

不要忘了最后把p、q之间的连边删除。

找前驱后继再删除,可以用splay实现。

但是没有必要,set完全可以支持。

代码:

#include<bits/stdc++.h>
using namespace std;
const int N=+;
const double inf=19260817.0;
int n,m;
int cx,cy,far;
double now;
struct que{
int typ;
int id;
double ans;
}q[*N];
struct po{
int x,y;
bool friend operator<(po a,po b){
return a.x<b.x;
}
void op(){
cout<<" point "<<x<<" "<<y<<endl;
}
}a[N];
bool die[N];
set<po>s;
set<po>::iterator it1,it2,it3;
double dis(po a,po b){
return sqrt((double)(a.x-b.x)*(a.x-b.x)+(double)(a.y-b.y)*(a.y-b.y));
}
double slo(po a,po b){//(x1,y1) -> (x2,y2)
if(a.x==b.x){
return a.y>b.y?-inf:inf;
}
return ((double)a.y-(double)b.y)/((double)a.x-(double)b.x);
}
void upda(po lp){
//lp.op();
//cout<<" size "<<s.size()<<endl;
it2=s.lower_bound(lp);
it1=it2;it1--;
if(slo(*it1,lp)<=slo(*it1,*it2)&&slo(*it1,*it2)<=slo(lp,*it2)){
return;//has been protected;
}
now-=dis(*it1,*it2);
it3=it2;it3++;
while(it3!=s.end()&&slo(lp,*it2)<=slo(lp,*it3)){
now-=dis(*it2,*it3);
s.erase(it2);
it2=it3;
it3++;
}
now+=dis(lp,*it2);
it3=it1;it3--;
while(it1!=s.begin()&&slo(lp,*it1)>=slo(lp,*it3)){
now-=dis(*it1,*it3);
s.erase(it1);
it1=it3;
it3--;
}
now+=dis(lp,*it1);
s.insert(lp);
}
int main()
{
scanf("%d%d%d",&far,&cx,&cy);
scanf("%d",&n);int x,y;
for(int i=;i<=n;i++){
scanf("%d%d",&x,&y);
a[i].x=x,a[i].y=y;
}
scanf("%d",&m);
for(int i=;i<=m;i++){
scanf("%d",&q[i].typ);
if(q[i].typ==) scanf("%d",&q[i].id),die[q[i].id]=;
}
po st;st.x=,st.y=;s.insert(st);
po nd;nd.x=far,nd.y=;s.insert(nd);
po ca;ca.x=cx,ca.y=cy;s.insert(ca);
now=dis(st,ca)+dis(ca,nd);
for(int i=;i<=n;i++){
if(!die[i]){
upda(a[i]);
}
}
for(int i=m;i>=;i--){
if(q[i].typ==){
q[i].ans=now;
}
else{
upda(a[q[i].id]);
}
}
for(int i=;i<=m;i++){
if(q[i].typ==){
printf("%.2lf\n",q[i].ans);
}
}
return ;
}

总结:

现在我们有了一些斜率优化中,维护凸包的方法。

1.单调队列,适用于斜率有单调性,并且x要有单调性。才可以直接队头弹出,队尾插入。均摊O(1)

2.队列+二分。对于加入点的x有单调性,但是查询的斜率无单调性的时候,就要二分了。

二分到第一个斜率大于/小于查询斜率的点,作为决策点即可。除了队尾加入的时候,为了维护凸包所需,不会从队头弹出点。】

3.set(平衡树)维护。对于一般情况的凸包,可能加入的x在任何位置,查询什么凸包的周长,就必须用set了。

但是,对于斜率优化中,要查询一个第一个和后继/前驱比k大/小的点,因为set是按照x重载的运算符,不能直接lower_bound了。

所以,只能手写一棵splay,(就我所知)别无他法。

具体来说,一个splay树上的节点,按照x排序,而且必须还要记录和后继的斜率slope,和子树内所有后继斜率slope的最小值,便于直接二分。

[HAOI2011]防线修建的更多相关文章

  1. 【BZOJ 2300】 2300: [HAOI2011]防线修建 (动态凸包+set)

    2300: [HAOI2011]防线修建 Description 近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了.可是A国上 ...

  2. BZOJ 2300: [HAOI2011]防线修建( 动态凸包 )

    离线然后倒着做就变成了支持加点的动态凸包...用平衡树维护上凸壳...时间复杂度O(NlogN) --------------------------------------------------- ...

  3. [luogu P2521] [HAOI2011]防线修建

    [luogu P2521] [HAOI2011]防线修建 题目描述 近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了.可是A国 ...

  4. P2521 [HAOI2011]防线修建

    题目链接:P2521 [HAOI2011]防线修建 题意:给定点集 每次有两种操作: 1. 删除一个点 (除开(0, 0), (n, 0), 与指定首都(x, y)) 2. 询问上凸包长度 至于为什么 ...

  5. bzoj千题计划236:bzoj2300: [HAOI2011]防线修建

    http://www.lydsy.com/JudgeOnline/problem.php?id=2300 维护动态凸包,人懒用的set 用叉积判断,不要用斜率 #include<set> ...

  6. 【BZOJ2300】[HAOI2011]防线修建 set维护凸包

    [BZOJ2300][HAOI2011]防线修建 Description 近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了.可 ...

  7. 【题解】P2521 [HAOI2011]防线修建(动态凸包)

    [题解]P2521 [HAOI2011]防线修建(动态凸包) 凸包是易插入不好删除的东西,按照剧情所以我们时光倒流 然后问题就是维护凸包的周长,支持加入 本来很简单,但是计算几何就是一些小地方经验不足 ...

  8. BZOJ2300[HAOI2011]防线修建——非旋转treap+凸包(平衡树动态维护凸包)

    题目描述 近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了.可是A国上层现在还犹豫不决,到底该把哪些城市作为保护对象呢?又由于 ...

  9. LG2521 [HAOI2011]防线修建

    题意 题目描述 近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了.可是A国上层现在还犹豫不决,到底该把哪些城市作为保护对象呢? ...

随机推荐

  1. CS224n学习笔记1——深度自然语言处理

    一.什么是自然语言处理呢? 自然语言处理是计算机科学家提出的名字,本质上与计算机语言学是同义的,它跨越了计算机学.语言学以及人工智能学科. 自然语言处理是人工智能的一个分支,在计算机研究领域中,也有其 ...

  2. 对React children 的深入理解

    React的核心为组件.你可以像嵌套HTML标签一样嵌套使用这些组件,这使得编写JSX更加容易因为它类似于标记语言. 当我刚开始学习React时,当时我认为“使用 props.children 就这么 ...

  3. vim 多个文件切换 :b 命令

    MiniBufExplorer插件的使用 博客分类: vim vimMiniBufExplorer 快速浏览和操作Buffer -- 插件: MiniBufExplorer 下载地址 [http:// ...

  4. Scrum Meeting 8 -2014.11.14

    给开发加了个pdf信息提取优化任务. 弄了半天发现服务器也是个好东西.这周末可以和爬虫讨论整合的问题了. Member Today’s task Next task 林豪森 协助测试及服务器部署 协助 ...

  5. 2018-2019-20172321 《Java软件结构与数据结构》第九周学习总结

    2018-2019-20172321 <Java软件结构与数据结构>第九周学习总结 教材学习内容总结 第15章 图 无向图 图由顶点和边组成. 顶点由名字或标号来表示,如:A.B.C.D: ...

  6. C#获取周一、周日的日期 函数类

    #region 得到一周的周一和周日的日期        /// <summary>         /// 计算本周的周一日期         /// </summary> ...

  7. Task 6.4 冲刺Two之站立会议8

    今天团队主要进行了用户使用的部分,因为软件操作相对来说比较复杂,因为要改很多东西,比方用户注册,还有更改软件连接服务器的IP.所以我们需要对用户进行详细地讲解.

  8. 关于echart柱形图的使用问题

    关于一个数据对应两个值的问题 series: [{ name: '数量(个)', type: 'bar', barWidth: '30%', barGap: , //两个数据条没有间距 data: y ...

  9. c++中的函数重载

    函数多态也称为函数重载. (1)函数重载指的是可以有多个同名的函数,因此对名称进行了重载. (2)函数重载的关键在于函数的参数列表,也称为函数特征标.如果两个函数的参数数目和参数类型相同,同时参数的排 ...

  10. autoit获取ie浏览器简单操作网页(GUI小工具)

    需要稍稍熟悉一下autoti提供的语言, 我简单做了一个带GUI的小工具,实现根据IE标题点击页面内的LinkText 注意:使用时IE窗口是显示状态才可以获取到(可以在脚本中加入搜索IE句柄,将ie ...