题目描述

近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了。可是A国上层现在还犹豫不决,到底该把哪些城市作为保护对象呢?又由于A国的经费有限,所以希望你能帮忙完成如下的一个任务:

  1. 给出你所有的A国城市坐标

  2. A国上层经过讨论,考虑到经济问题,决定取消对i城市的保护,也就是说i城市不需要在防线内了

  3. A国上层询问对于剩下要保护的城市,修建防线的总经费最少是多少

你需要对每次询问作出回答。注意单位1长度的防线花费为1。

A国的地形是这样的,形如下图,x轴是一条河流,相当于一条天然防线,不需要你再修建

A国总是有两个城市在河边,一个点是(0,0),一个点是(n,0),其余所有点的横坐标均大于0小于n,纵坐标均大于0。A国有一个不在(0,0)和(n,0)的首都。(0,0),(n,0)和首都这三个城市是一定需要保护的。

说明

数据范围:

30%的数据m<=1000,q<=1000

100%的数据m<=100000,q<=200000,n>1

所有点的坐标范围均在10000以内, 数据保证没有重点

题解

要动态维护一个凸包。还要维护删除操作?

删除麻烦,可以离线,把删除变成插入操作。

一切就简单又自然了。

插入一个点t,就要找到凸包上的第一个大于等于横坐标x的点p,和第一个小于x的点q。即后继前驱。

题目很善良,河边点不会删除,所以一定在凸包上,不会有什么边界的锅。

如果在凸包里面那么就直接返回,怎么判断?

如果q和p的斜率在t和p的斜率,t和q的斜率大小之间的话,那么这个点一定不在凸包上。画图可以理解。

反之就一定在凸包上。

然后开始弹出点。不断向右比较斜率,再不断向左比较斜率。

最后把t加入凸包。

删除点的时候,实时更新防线的长度。

不要忘了最后把p、q之间的连边删除。

找前驱后继再删除,可以用splay实现。

但是没有必要,set完全可以支持。

代码:

#include<bits/stdc++.h>
using namespace std;
const int N=+;
const double inf=19260817.0;
int n,m;
int cx,cy,far;
double now;
struct que{
int typ;
int id;
double ans;
}q[*N];
struct po{
int x,y;
bool friend operator<(po a,po b){
return a.x<b.x;
}
void op(){
cout<<" point "<<x<<" "<<y<<endl;
}
}a[N];
bool die[N];
set<po>s;
set<po>::iterator it1,it2,it3;
double dis(po a,po b){
return sqrt((double)(a.x-b.x)*(a.x-b.x)+(double)(a.y-b.y)*(a.y-b.y));
}
double slo(po a,po b){//(x1,y1) -> (x2,y2)
if(a.x==b.x){
return a.y>b.y?-inf:inf;
}
return ((double)a.y-(double)b.y)/((double)a.x-(double)b.x);
}
void upda(po lp){
//lp.op();
//cout<<" size "<<s.size()<<endl;
it2=s.lower_bound(lp);
it1=it2;it1--;
if(slo(*it1,lp)<=slo(*it1,*it2)&&slo(*it1,*it2)<=slo(lp,*it2)){
return;//has been protected;
}
now-=dis(*it1,*it2);
it3=it2;it3++;
while(it3!=s.end()&&slo(lp,*it2)<=slo(lp,*it3)){
now-=dis(*it2,*it3);
s.erase(it2);
it2=it3;
it3++;
}
now+=dis(lp,*it2);
it3=it1;it3--;
while(it1!=s.begin()&&slo(lp,*it1)>=slo(lp,*it3)){
now-=dis(*it1,*it3);
s.erase(it1);
it1=it3;
it3--;
}
now+=dis(lp,*it1);
s.insert(lp);
}
int main()
{
scanf("%d%d%d",&far,&cx,&cy);
scanf("%d",&n);int x,y;
for(int i=;i<=n;i++){
scanf("%d%d",&x,&y);
a[i].x=x,a[i].y=y;
}
scanf("%d",&m);
for(int i=;i<=m;i++){
scanf("%d",&q[i].typ);
if(q[i].typ==) scanf("%d",&q[i].id),die[q[i].id]=;
}
po st;st.x=,st.y=;s.insert(st);
po nd;nd.x=far,nd.y=;s.insert(nd);
po ca;ca.x=cx,ca.y=cy;s.insert(ca);
now=dis(st,ca)+dis(ca,nd);
for(int i=;i<=n;i++){
if(!die[i]){
upda(a[i]);
}
}
for(int i=m;i>=;i--){
if(q[i].typ==){
q[i].ans=now;
}
else{
upda(a[q[i].id]);
}
}
for(int i=;i<=m;i++){
if(q[i].typ==){
printf("%.2lf\n",q[i].ans);
}
}
return ;
}

总结:

现在我们有了一些斜率优化中,维护凸包的方法。

1.单调队列,适用于斜率有单调性,并且x要有单调性。才可以直接队头弹出,队尾插入。均摊O(1)

2.队列+二分。对于加入点的x有单调性,但是查询的斜率无单调性的时候,就要二分了。

二分到第一个斜率大于/小于查询斜率的点,作为决策点即可。除了队尾加入的时候,为了维护凸包所需,不会从队头弹出点。】

3.set(平衡树)维护。对于一般情况的凸包,可能加入的x在任何位置,查询什么凸包的周长,就必须用set了。

但是,对于斜率优化中,要查询一个第一个和后继/前驱比k大/小的点,因为set是按照x重载的运算符,不能直接lower_bound了。

所以,只能手写一棵splay,(就我所知)别无他法。

具体来说,一个splay树上的节点,按照x排序,而且必须还要记录和后继的斜率slope,和子树内所有后继斜率slope的最小值,便于直接二分。

[HAOI2011]防线修建的更多相关文章

  1. 【BZOJ 2300】 2300: [HAOI2011]防线修建 (动态凸包+set)

    2300: [HAOI2011]防线修建 Description 近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了.可是A国上 ...

  2. BZOJ 2300: [HAOI2011]防线修建( 动态凸包 )

    离线然后倒着做就变成了支持加点的动态凸包...用平衡树维护上凸壳...时间复杂度O(NlogN) --------------------------------------------------- ...

  3. [luogu P2521] [HAOI2011]防线修建

    [luogu P2521] [HAOI2011]防线修建 题目描述 近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了.可是A国 ...

  4. P2521 [HAOI2011]防线修建

    题目链接:P2521 [HAOI2011]防线修建 题意:给定点集 每次有两种操作: 1. 删除一个点 (除开(0, 0), (n, 0), 与指定首都(x, y)) 2. 询问上凸包长度 至于为什么 ...

  5. bzoj千题计划236:bzoj2300: [HAOI2011]防线修建

    http://www.lydsy.com/JudgeOnline/problem.php?id=2300 维护动态凸包,人懒用的set 用叉积判断,不要用斜率 #include<set> ...

  6. 【BZOJ2300】[HAOI2011]防线修建 set维护凸包

    [BZOJ2300][HAOI2011]防线修建 Description 近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了.可 ...

  7. 【题解】P2521 [HAOI2011]防线修建(动态凸包)

    [题解]P2521 [HAOI2011]防线修建(动态凸包) 凸包是易插入不好删除的东西,按照剧情所以我们时光倒流 然后问题就是维护凸包的周长,支持加入 本来很简单,但是计算几何就是一些小地方经验不足 ...

  8. BZOJ2300[HAOI2011]防线修建——非旋转treap+凸包(平衡树动态维护凸包)

    题目描述 近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了.可是A国上层现在还犹豫不决,到底该把哪些城市作为保护对象呢?又由于 ...

  9. LG2521 [HAOI2011]防线修建

    题意 题目描述 近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了.可是A国上层现在还犹豫不决,到底该把哪些城市作为保护对象呢? ...

随机推荐

  1. linux一切皆文件之Unix domain socket描述符(二)

    一.知识准备 1.在linux中,一切皆为文件,所有不同种类的类型都被抽象成文件(比如:块设备,socket套接字,pipe队列) 2.操作这些不同的类型就像操作文件一样,比如增删改查等 3.主要用于 ...

  2. codeforces 1140E Palindrome-less Arrays

    题目链接:http://codeforces.com/contest/1140/problem/E 题目大意: 如果一个数组的存在一个奇数长的回文就不好. 不是不好的数组是好的. 你可以把-1用1到k ...

  3. zookeeper_节点数据版本号问题

    转自:Simba_cheng 更新节点数据的方法: 同步方法:Stat setData(final String path, byte data[], int version) 异步方法:void s ...

  4. sql语句(Mysql数据库)

    Mysql数据库的sql语句: 一.基本操作 1.连接数据库 mysql -uroot -proot -hlocalhost -P3306 (-u表示用户名,-p密码,-h主机,-P端口号) 2.选择 ...

  5. 北美跨境电商平台Wish透露未来一年在华规划

    9月12日,北美跨境电商平台Wish在深圳透露了未来一年在中国区的重点规划.Wish中国区总裁丁浩川表示,在下一阶段,Wish公司将继续围绕 提升平台流量. 加强品类支撑. 深化库存管理. 推进物流改 ...

  6. Python函数式编程中map()、reduce()和filter()函数的用法

    Python中map().reduce()和filter()三个函数均是应用于序列的内置函数,分别对序列进行遍历.递归计算以及过滤操作.这三个内置函数在实际使用过程中常常和“行内函数”lambda函数 ...

  7. 11.15 Daily Scrum

    今天是假期回来的第一个周末,也是我们团队的又一次进度汇总总结和调试工作开展,鉴于一周以来大家的工作有了很大的成果,所以,本次召开的会议主旨在于解决一些开发方面的细节问题,达成共识,为日后进一步的功能方 ...

  8. POJ 2096 Collecting Bugs 期望dp

    题目链接: http://poj.org/problem?id=2096 Collecting Bugs Time Limit: 10000MSMemory Limit: 64000K 问题描述 Iv ...

  9. 【CSAPP笔记】2. 整型运算

    现在想补补推荐这本书的理由. Most books on systems-computer architecture, compilers, operating systems, and networ ...

  10. js 刷新当前页面会弹出提示框怎样将这个提示框去掉

    //禁止刷新提示window.onbeforeunload = function() { var n = window.event.screenX - window.screenLeft; var b ...