BZOJ4513: [Sdoi2016]储能表
Description
有一个 n 行 m 列的表格,行从 0 到 n−1 编号,列从 0 到 m−1 编号。每个格子都储存着能量。最初,第 i 行第 j 列的格子储存着 (i xor j) 点能量。所以,整个表格储存的总能量是,
.png)
.png)
Input
第一行一个整数 T,表示数据组数。接下来 T 行,每行四个整数 n、m、k、p。
Output
共 T 行,每行一个数,表示总能量对 p 取模后的结果
Sample Input
2 2 0 100
3 3 0 100
3 3 1 100
Sample Output
12
6
HINT
T=5000,n≤10^18,m≤10^18,k≤10^18,p≤10^9
#include<cstdio>
#include<cctype>
#include<queue>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i;i=next[i])
using namespace std;
const int BufferSize=1<<16;
char buffer[BufferSize],*head,*tail;
inline char Getchar() {
if(head==tail) {
int l=fread(buffer,1,BufferSize,stdin);
tail=(head=buffer)+l;
}
return *head++;
}
typedef long long ll;
inline ll read() {
ll x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
ll xp[70],f[70][2][2][2],g[70][2][2][2],n,m,k;
//c1=1 -> x<n c2=1 -> y<m c3=1 -> x^y>k
int p,bitn[70],lenn,bitm[70],lenm,bitk[70],lenk;
void solve() {
memset(bitn,0,sizeof(bitn));
memset(bitm,0,sizeof(bitm));
memset(bitk,0,sizeof(bitk));
memset(f,0,sizeof(f));
memset(g,0,sizeof(g));
lenn=lenm=lenk=0;
while(n) bitn[lenn++]=n&1,n>>=1;
while(m) bitm[lenm++]=m&1,m>>=1;
while(k) bitk[lenk++]=k&1,k>>=1;
int len=max(lenn,max(lenm,lenk));
xp[0]=1;rep(i,1,len) xp[i]=(xp[i-1]*2)%p;
rep(c1,0,1) rep(c2,0,1) rep(c3,0,1) {
ll &ans=f[0][c1][c2][c3],&ans2=g[0][c1][c2][c3];
rep(x,0,(c1?1:bitn[0]-1)) rep(y,0,(c2?1:bitm[0]-1)) {
if((x^y)>=bitk[0]) (ans+=((x^y)-bitk[0]))%=p,ans2++;
else if(c3) (ans+=((x^y)-bitk[0]))%=p,ans2++;
}
}
rep(i,1,len-1) rep(c1,0,1) rep(c2,0,1) rep(c3,0,1) {
ll &ans=f[i][c1][c2][c3],&ans2=g[i][c1][c2][c3];
rep(x,0,max(bitn[i],c1)) rep(y,0,max(bitm[i],c2)) {
if((x^y)>=bitk[i]) {
(ans+=f[i-1][c1|(x<bitn[i])][c2|(y<bitm[i])][c3|((x^y)>bitk[i])]+g[i-1][c1|(x<bitn[i])][c2|(y<bitm[i])][c3|((x^y)>bitk[i])]*((x^y)-bitk[i])*xp[i])%=p;
(ans2+=g[i-1][c1|(x<bitn[i])][c2|(y<bitm[i])][c3|((x^y)>bitk[i])])%=p;
}
else if(c3) {
(ans+=f[i-1][c1|(x<bitn[i])][c2|(y<bitm[i])][c3|((x^y)>bitk[i])]+g[i-1][c1|(x<bitn[i])][c2|(y<bitm[i])][c3|((x^y)>bitk[i])]*((x^y)-bitk[i])*xp[i])%=p;
(ans2+=g[i-1][c1|(x<bitn[i])][c2|(y<bitm[i])][c3|((x^y)>bitk[i])])%=p;
}
}
}
printf("%lld\n",(f[len-1][0][0][0]+p)%p);
}
int main() {
dwn(T,read(),1) {
n=read();m=read();k=read();p=read();
solve();
}
return 0;
}
BZOJ4513: [Sdoi2016]储能表的更多相关文章
- BZOJ4513 SDOI2016 储能表 记忆化搜索(动态规划)
题意: 题面中文,不予翻译:SDOI2016储能表 分析: 据说有大爷用一些奇怪的方法切掉了这道题%%%%% 这里用的是大众方法——动态规划. 其实这是一道类似于二进制数位dp的动态规划题,(但是实际 ...
- BZOJ4513 SDOI2016储能表(数位dp)
如果n.m.k都是2的幂次方,答案非常好统计.于是容易想到数位dp,考虑每一位是否卡限制即可,即设f[i][0/1][0/1][0/1]为第i位是/否卡n.m.k的限制时,之前的位的总贡献:g[i][ ...
- bzoj千题计划277:bzoj4513: [Sdoi2016]储能表
http://www.lydsy.com/JudgeOnline/problem.php?id=4513 f[i][0/1][0/1][0/1] 从高到低第i位,是否卡n的上限,是否卡m的上限,是否卡 ...
- BZOJ4513: [Sdoi2016]储能表(数位dp)
题意 题目链接 Sol 一点思路都没有,只会暴力,没想到标算是数位dp??Orz 首先答案可以分成两部分来统计 设 \[ f_{i,j}= \begin{aligned} i\oplus j & ...
- [bzoj4513][SDOI2016]储能表——数位dp
题目大意 求 \[\sum_{i = 0}^{n-1}\sum_{j=0}^{m-1} max((i\ xor\ j)\ -\ k,\ 0)\ mod\ p\] 题解 首先,开始并没有看出来这是数位d ...
- 【BZOJ4513】[Sdoi2016]储能表 数位DP
[BZOJ4513][Sdoi2016]储能表 Description 有一个 n 行 m 列的表格,行从 0 到 n−1 编号,列从 0 到 m−1 编号.每个格子都储存着能量.最初,第 i 行第 ...
- BZOJ 4513: [Sdoi2016]储能表 [数位DP !]
4513: [Sdoi2016]储能表 题意:求\[ \sum_{i=0}^{n-1}\sum_{j=0}^{m-1} max((i\oplus j)-k,0) \] 写出来好开心啊...虽然思路不完 ...
- 4513: [Sdoi2016]储能表
4513: [Sdoi2016]储能表 链接 分析: 数位dp. 横坐标和纵坐标一起数位dp,分别记录当前横纵坐标中这一位是否受n或m的限制,在记录一维表示当前是否已经大于k了. 然后需要两个数组记录 ...
- 【LG4067】[SDOI2016]储能表
[LG4067][SDOI2016]储能表 题面 洛谷 题解 这种$n$.$m$出奇的大的题目一看就是数位$dp$啦 其实就是用一下数位$dp$的套路 设$f[o][n][m][k]$表示当前做到第$ ...
随机推荐
- HDU5115 Dire Wolf(区间DP)
渐渐认识到区域赛更侧重的是思维及基本算法的灵活运用,而不是算法的量(仅个人见解),接下来要更多侧重思维训练了. 区间DP,dp[i][j]表示从i到j最终剩余第i 与第j只的最小伤害值,设置0与n+1 ...
- html5 web database
html5 web database <!DOCTYPE html> <html lang="en"> <head> <meta char ...
- Mysql常用命令详解
Mysql安装目录 数据库目录 /var/lib/mysql/ 配置文件 /usr/share/mysql(mysql.server命令及配置文件) 相关命令 /usr/bin(mysqladmin ...
- hdu 2232 矩阵 ***
一天四个不同的机器人a.b.c和d在一张跳舞毯上跳舞,这是一张特殊的跳舞毯,他由4个正方形毯子组成一个大的正方形毯子,一开始四个机器人分别站在4 块毯子上,舞蹈的每一步机器人可以往临近(两个毯子拥有同 ...
- ios内购
1.添加框架,storeKit.framework 需要真机调试 /* 内购五步: 1.请求可销售商品的列表 2.展示课销售的商品 3.点击购买 4.开具小票 5.创建交易对象并添加到交易队列 6.创 ...
- 基于XMPP协议的Android即时通信系
以前做过一个基于XMPP协议的聊天社交软件,总结了一下.发出来. 设计基于开源的XMPP即时通信协议,采用C/S体系结构,通过GPRS无线网络用TCP协议连接到服务器,以架设开源的Openfn'e服务 ...
- .htaccess是什么?.htaccess几个简单应用
.htaccess是什么? .htaccess叫分布式配置文件,它提供了针对目录改变配置的方法——在一个特定的文档目录中放置一个包含一个或多个指令的文件, 以作用于此目录及其所有子目录.并且子目录中的 ...
- 【转】Linux IO实时监控iostat命令详解
转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/13/2858810.html 简介 iostat主要用于监控系统设备的IO负载情况,iosta ...
- SU suvelan命令学习
- SU Demos-05Sorting Traces-03susorty
运行结果: