3.1 Vector Spaces

The space \(R^n\) consists of all colunm vectors \(v\) with n components. We can add any vectors in \(R^n\) , and we can multiply any vector \(v\) by any scalar c , the result stays in the space \(R^n\).

examples:

columns between brackets : \(\left[ \begin{matrix} 4 \\ \pi \end{matrix} \right]\) is in \(R^2\)

commas and parentheses : (1,1,0,1,1) is in \(R^5\)

complex numbers spaces : \(\left[ \begin{matrix} 1 + i \\ 1-i \end{matrix} \right]\)

3.2 Subspaces

A subspace of a vector space is a set of vectors (including 0) that satisfies two requirements.

If \(v\) and \(w\) are vectors in the subspace and c is any scalar, then:

  • rule 1 : \(v + w\) is in the subspace.
  • rule 2 : \(cv\) is in the subspace.
  • rule 1 + rule 2 : $cv + dw $ is in the subspace. (subspace is closed.)

Every subspace contains the zero vector.

Example: \(R^3\) subspaces

  • The whole space \(R^3\) is a subspace (of itself)-- The largest one.
  • Any lines through (0,0,0) -- L
  • Any plane through (0,0,0) -- P
  • The single vector (0,0,0) -- Z (zero vectors space--The littlest one)

3.3 Column Space

Ax =b , the column space of A is denoted by C(A) , C(A) contains not just the n columns of A, but all their combinations Ax,C(A) is a subspace of \(R^m\).

The system Ax=b is solvable if and only if b is in the column space of A.

\[C(A) = all \quad combinations \quad of \quad the \quad columns = all \quad vectors \quad Ax
\]

example:

\[Ax = \left[ \begin{matrix} 1&0 \\ 4&3 \\ 2&3 \end{matrix}\right]
\left[ \begin{matrix} x_1 \\ x_2 \end{matrix}\right] =
x_1\left[ \begin{matrix} 1 \\ 4 \\ 2 \end{matrix}\right] +
x_2\left[ \begin{matrix} 0 \\ 3 \\ 3 \end{matrix}\right]
\]

3.4 The Nullspace : Ax=0 or Rx=0

Key notes:

  • The nullspace N(A) in \(R^n\) contains all solutions x to \(Ax=0\). This includes x=0.
  • Elimination (from A to U to R) does not change the nullspace : N(A)=N(U)=N(R).
  • The reduced row echelon form R=rref(A) has all pivots = 1, with zeros above and below.
  • If column j of R is free (no pivot), there is "special solution" to Ax=0 with \(x_j=1\).
  • Number of pivots = number of nonzero rows in R = rank r . There are n-r free columns(variables\dimensions).
  • Every matrix with m<n has nonzero solutions to Ax=0 in its nullspace.

Solution steps:

  • reducing A to its row echelon form R.
  • finding the special solutions to Ax=0. ( Ux = 0 or Rx = 0)
  • N(A) = N(U) = N(R) = all combinations of special solutions.
\[A = \left [ \begin{matrix} p&p&f&p&f \\ \vdots&\vdots&\vdots&\vdots&\vdots \end{matrix}\right] \\
(3 \ \ pivot \ \ columns \ \ p ,2 \ \ free \ \ columns \ \ f) \\
step \ \ 1 \Downarrow \\
R = \left [ \begin{matrix} 1&0&a&0&c \\ 0&1&b&0&d \\ 0&0&0&1&e \\ 0&0&0&0&0 \end{matrix}\right] \\
(I \ \ in \ \ pivot \ \ columns ,F \ \ in \ \ free \ \ columns, 3 \ \ pivots: rank=3 ) \\
step \ \ 2 \Downarrow \\
s_1 =\left[ \begin{matrix} -a \\ -b \\ 1 \\ 0 \\ 0 \end{matrix}\right] \ \
s_2 =\left[ \begin{matrix} -c \\ -d \\ 0 \\ -e \\ 1 \end{matrix}\right] \\
step \ \ 3 \Downarrow \\
N(A) = N(U) = N(R) = all \ \ combinations \ \ of \ \ s_1 \ \ and \ \ s_2.
\]

3.5 The Complete solutions : Ax=b or Rx = d

Key notes:

  • Complete solution to Ax=b : x = (one particular solution \(x_p\)) + (any \(x_n\) in the nullspace).
  • Elimination on [A b] leads to [R d]. Then Ax=b is equivalent to Rx=d.
  • Ax = b and Rx=d are solvable only when all zero rows of R have zeros in d.
  • When Rx=d is solvable, one very particular solution \(x_p\) has all free variables equal to zero.
  • A has full rank r=n when its nullspace N(A) = zero vector : no free variables.
  • A has full row rank r = m when its column space C(A) is \(R^m\) : Ax=b is always solvable.

Solution steps:

  • Produce the augmented matrix [A b]
  • Get Elimination form [R d]
  • Set free variables = 0, and get a particular solution -- \(x_p\)
  • Set free variables = 1 or 0,and get n - r special solutions -- \(x_n\)
  • Complete solution: \(x = x_p + x_n\)

example:

\[Ax = b \\

\Downarrow \\
\left [ \begin{matrix} 1&3&0&2 \\ 0&0&1&4 \\ 1&3&1&6 \end{matrix}\right]
\left [ \begin{matrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{matrix}\right]
= \left [ \begin{matrix} 1 \\ 6 \\ 7 \end{matrix}\right] \\

\Downarrow \\
[A \ \ b] = \left [ \begin{matrix} 1&3&0&2&1 \\ 0&0&1&4&6 \\ 1&3&1&6&7 \end{matrix}\right] \\
\Downarrow \\
[R \ \ d] = \left [ \begin{matrix} 1&3&0&2&1 \\ 0&0&1&4&6 \\ 0&0&0&0&0 \end{matrix}\right] \\

\Downarrow \\
Pivot \ \ variables(x_1, x_3) = 1, 6 \\
Free \ \ variables (x_2, x_4) = 0, 0 \\
Solution \ \ x_p = (1, 0, 6, 0) \\

\Downarrow \\
Free \ \ variables (x_2, x_4) = 1 \ \ or \ \ 0 \\
s_1 = [-3, 1, 0, 0] \\
s_2 = [-2, 0, -4, 1] \\
x_n =c\left [ \begin{matrix} -3 \\ 1 \\ 0 \\ 0 \end{matrix}\right] + d\left [ \begin{matrix} -2 \\ 0 \\ -4 \\ 1 \end{matrix}\right] \\

\Downarrow \\
x = x_p + x_n = \left [ \begin{matrix} 1 \\ 0 \\ 6 \\ 0 \end{matrix}\right] +
c\left [ \begin{matrix} -3 \\ 1 \\ 0 \\ 0 \end{matrix}\right] +
d\left [ \begin{matrix} -2 \\ 0 \\ -4 \\ 1 \end{matrix}\right]
\]

The four possibilities for linear equations depend on the rank k :

  • r = m = n , square and invertible, \(R = [I]\),Ax = b has 1 solution (unkowns=equations)
  • r = m < n, short and wide, \(R = [I \ \ F]\),Ax = b has infinite solutions (unkowns > equations)
  • r = n < m,Tall and thin,\(R = \left [ \begin{matrix} I \\ F\end{matrix}\right]\), Ax = b 0 or 1 solutions (unkonwns < equations)
  • r < n and r < m,not full rank,\(R = \left [ \begin{matrix} I&F \\ 0&0 \end{matrix}\right]\), Ax=b has 0 or infinite solutions

3.6 Independence, Basis and Dimension

Independent

  • Independent columns of A : The only solution to Ax=0 is x=0, the nullspace is Z.
  • Independent vectors : The only zero combination \(c_1v_1 + c_2v_2 + ... + c_kv_k = 0\) has all c's = 0.
  • A matrix with m<n has dependent columns : At least n-m free variables/special solutions.

Basis

A basis for a vector space is a sequence of vectors with two properties:

  • The basis vectors are linearly independent.
  • They span the space.
    • The rows are in \(R^n\) spanning the row space.
    • The columns are in \(R^m\) spanning the column space.

Every vector \(v\) in the space is a combination of the basis vectors, because they span the space, and there is only one way to write \(v\) as a combination of the basis vectors.

The pivot columns of A are a basis for its column space. The pivot rows of A are a basis for its row space. So are the pivot rows of its echelon form R.

  • a basis of \(C(A)\) = pivots columns of A.
  • a basis of \(C(A^T)\) = pivots rows of A.

example:

\[A = \left[ \begin{matrix} 2&4 \\ 3&6 \end{matrix}\right]
\quad reduces
\quad to
\quad
R = \left[ \begin{matrix} 1&2 \\ 0&0 \end{matrix}\right]
\]

The column spaces of A and R are different and their bases are different.

Column 1 of R is the pivot column, which alone is a basis for C(R): \(\left[ \begin{matrix} 1 \\ 0\end{matrix} \right]\)

Column 1 of A is the pivot column, which alone is a basis for C(A): \(\left[ \begin{matrix} 2 \\ 3\end{matrix} \right]\)

Row 1 of R is the pivot row, which alone is a basis for \(C(R^T)=C(A^T)\): \(\left[ \begin{matrix} 1&2 \end{matrix} \right]\)

Dimension

The dimension of a space is the number of vectors in every basis.

Bases for Matrix Spaces and Function Spaces

Matrix spaces:

  • The vector space M contains all n by n matrices, its dimension is \(n^2\).
  • The dimension of the subspace of upper triangular matrices is \(1/2n^2 + 1/2 n\).
  • The dimension of the subspace of diagonal matrices is n.
  • The dimension of the subspace of symmetric matrices if \(1/2n^2 + 1/2 n\).

example:

One basis

\[A_1, A_2,A_3,A_4 = \left[ \begin{matrix} 1&0 \\ 0&0 \end{matrix}\right],
\left[ \begin{matrix} 0&1 \\ 0&0 \end{matrix}\right],
\left[ \begin{matrix} 0&0 \\ 1&0 \end{matrix}\right],
\left[ \begin{matrix} 0&0 \\ 0&1 \end{matrix}\right]
\]

Every A combines the basis matrices

\[A = c_1A_1 + c_2A_2 +c_3A_3 +c_4A_4 = \left[ \begin{matrix} c_1&c_2 \\ c_3&c_4 \end{matrix}\right]
\]

Function spaces:

  • \(y''=0\) is solved by any linear function \(y = cx + d\),the space bases has x and 1.
  • \(y'' = -y\) is solved by any combination \(y= csinx + dcosx\), the space bases has \(sinx\) and \(cosx\).
  • \(y'' = y\) is solved by any combination \(y=ce^x + de^{-x}\),the space bases has \(e^x\) and \(e^{-x}\).

3.7 Dimensions of the Four Subspaces

Keys notes:

  • The column space is \(C(A)\),a subspace of \(R^m\), has a dimensions r,\(r=pivot \ \ columns\)

  • The row space is \(C(A^T)\),a subspace of \(R^n\), has a dimensions r, \(r=pivot \ \ rows\)

  • The nullspace is \(N(A)\),a subspace of \(R^n\), has a dimensions \(n-r\), numbers of free variables

  • The left nullspace is \(N(A^T)\),a subspace of \(R^m\), has a dimensions \(m-r\), numbers of free rows

example : Ax = b

\[A = \left[ \begin{matrix} -1&1&0&0 \\ -1&0&1&0 \\ 0&-1&1&0 \\ 0&-1&0&1 \\ 0&0&-1&1 \end{matrix}\right]
\quad reduces \ \ to \ \
R = \left[ \begin{matrix} 1&0&0&-1 \\ 0&1&0&-1 \\ 0&0&1&-1 \\ 0&0&0&0 \\ 0&0&0&0 \end{matrix}\right]
\]

  1. The column space \(C(A)\) : r = 3 independent columns, a basis is the columns 1,2,3 of A.
  2. The row space \(C(A^T)\) : r = 3 independent rows, a basis is the rows 1,2,4 of A or R. (\(P_{34}EA=R\))
  3. The nullspace N(A) : Set b = 0, N(A) = N(R),n - r = 4 - 3 = 1 free variables, x = (1, 1, 1, 1) is the basis for N(A).
  4. The nullspace \(N(A^T)\) :
    • m-r = 5 - 3 = 2 dimensions;
    • Solve \(A^Ty = 0\),combinations of the rows give zero, get special solutions \(y_1 = (1, -1, 1, 0, 0), y_2 = (0,0,-1,1,-1)\),a basis of \(N(A^T)\) is \(y_1, y_2\).
    • If EA=R, the last m-r rows of R are a basis for the left nullspace of A.

3.8 Rank One Matrices

  • Every rank one matrix is one column times one row : \(A=uv^T\)

    \[\left[ \begin{matrix} 2&3&7&8 \\ 2a&3a&7a&8a \\ 2b&3b&7b&8b \end{matrix} \right]
    = \left[ \begin{matrix} 1 \\ a \\ b \end{matrix} \right] \left[ \begin{matrix} 2&3&7&8 \end{matrix} \right]
    = uv^T
    \]
  • Every rank r matrix is a sum of r rank one matrices.

    \[A =\left[ \begin{matrix} &&& \\ u_1&u_2&u_3 \\ &&& \end{matrix} \right]
    \left[ \begin{matrix} v_1^T \\ v_2^T \\ zero \ \ row \end{matrix} \right]
    = u_1v_1^T + u_2v_2^T\\

    rank_A = rank1 + rank1
    \]

3. Vector Spaces and Subspaces的更多相关文章

  1. 【读书笔记】:MIT线性代数(2):Vector Spaces and Subspaces

    Vector Space: R1, R2, R3,R4 , .... Each space Rn consists of a whole collection of vectors. R5 conta ...

  2. 向量空间(Vector Spaces)

    向量空间(Vector Spaces) 向量空间又称线性空间,是线性代数的中心内容和基本概念之一.在解析几何里引入向量的概念后,是许多问题的处理变得更为简洁和清晰,在此基础上的进一步抽象化,形成了与域 ...

  3. Linear Algebra lecture6 note

    Vector spaces and subspaces Column space of A solving Ax=b Null space of A   Vector space requiremen ...

  4. Linear Algebra Lecture5 note

    Section 2.7     PA=LU and Section 3.1   Vector Spaces and Subspaces   Transpose(转置) example: 特殊情况,对称 ...

  5. 线性代数导论 | Linear Algebra 课程

    搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...

  6. 【读书笔记】:MIT线性代数(5):Four fundamental subspaces

    At the beginning, the difference between rank and dimension: rank is a property for matrix, while di ...

  7. Discrete.Differential.Geometry-An.Applied.Introduction(sig2013) 笔记

    The author has a course on web: http://brickisland.net/DDGSpring2016/ It has more reading assignment ...

  8. 【Math for ML】线性代数之——向量空间

    I. Groups 在介绍向量空间之前有必要介绍一下什么Group,其定义如下: 注意定义中的\(\bigotimes\)不是乘法,而是一种运算符号的统一标识,可以是乘法也可以是加法等. 此外,如果\ ...

  9. 特征向量-Eigenvalues_and_eigenvectors#Graphs 线性变换

    总结: 1.线性变换运算封闭,加法和乘法 2.特征向量经过线性变换后方向不变 https://en.wikipedia.org/wiki/Linear_map Examples of linear t ...

  10. [线性代数] 矩阵代数基础 Basic Matrix Algebra

    Overview: Matrix algebra Matrix algebra covers rules allowing matrices to be manipulated algebraical ...

随机推荐

  1. 07、Etcd 中Raft算法简介

    本篇内容主要来源于自己学习的视频,如有侵权,请联系删除,谢谢. 思考: etcd是如何基于Raft来实现高可用.数据强-致性的? 1.什么是Raft算法 Raft 算法是现在分布式系统开发首选的共识算 ...

  2. 在Study.BlazorOne项目中引入Study.Trade模块的实体的表结构

    # 1.修改EntityFrameworkCore项目下的BlazorOneDbContext文件,增加一行代码即可 增加Study.Trade.EntityFrameworkCore中的这个方法: ...

  3. 【夏令时】用@JsonFormat(pattern = “yyyy-MM-dd“)注解,出生日期竟然年轻了一天

    前言 缘由 用@JsonFormat(pattern = "yyyy-MM-dd")注解,出生日期竟然年轻了一天 艺术源于生活,bug源于开发. 起因是艰苦奋战一个月,测试及验收都 ...

  4. C++//常用排序算法 sort //打乱 random_shuffle //merge 两个容器元素合并,并储存到另一容器中(相同的有序序列) //reverse 将容器内的元素进行反转

    1 //常用排序算法 sort //打乱 random_shuffle 2 //merge 两个容器元素合并,并储存到另一容器中(相同的有序序列) 3 //reverse 将容器内的元素进行反转 4 ...

  5. vmware虚拟机出现此电脑无法运行win11,虚拟机中安装win11系统教程

    一.点击新建虚拟机 二.选择自定义安装 三.默认 四.选择win11镜像 五.选择windows 六.命名 七.勾选安全引导 八.两个处理器即可 九.最低4G内存,接下来一直默认点下一步即可 十.创建 ...

  6. (三)Git 学习之分支操作

    一.分支简介 1.1 Git 分支初探 几乎所有的版本控制系统都会以某种形式支持分支. 使用分支意味着你可以把你的工作从开发主线上分离开来,以免影响开发主线. 假设你准备开发一个新功能,但是需要两周时 ...

  7. 开源好用的所见即所得(WYSIWYG)编辑器:Editor.js

    @ 目录 特点 基于区块 干净的数据 界面与交互 插件 标题和文本 图片 列表 Todo 表格 使用 安装 创建编辑器实例 配置工具 本地化 自定义样式 今天介绍一个开源好用的Web所见即所得(WYS ...

  8. idea dev 分支合并到 master 流程

    合并分支前要全部提交 包括config.js 要不merge时候很麻烦 1 切换到master分支 Checkout 2 Merge into Current 3 commit push 4 切换回d ...

  9. rancher添加用户报错x509: certificate has expired Internal error occurred: failed calling webhook "rancherauth.cattle.io":

    错误信息: Internal error occurred: failed calling webhook "rancherauth.cattle.io": Post https: ...

  10. Android Studio虚拟机文件默认C盘转移其他盘

    原文地址:Android Studio虚拟机文件默认C盘转移其他盘 - Stars-One的杂货小窝 某天发现,新创建的Android13模拟器,把我C盘搞得只剩下9G了,于是折腾了下,把模拟器相关文 ...