前言

看过不少关于 await 的原理的文章,也知道背后是编译器给转成了状态机实现的,但是具体是怎么完成的,回调又是如何衔接的,一直都没有搞清楚,这次下定决心把源码自己跑了下,终于豁然开朗了

本文的演示代码基于 VS2022 + .NET 6

示例

public class Program
{
static int Work()
{
Console.WriteLine("In Task.Run");
return 1;
} static async Task TestAsync()
{
Console.WriteLine("Before Task.Run");
await Task.Run(Work);
Console.WriteLine("After Task.Run");
} static void Main()
{
_ = TestAsync();
Console.WriteLine("End");
Console.ReadKey();
}
}
  • 很简单的异步代码,我们来看下,编译器把它变成了啥
class Program
{
static int Work()
{
Console.WriteLine("In Task.Run");
return 1;
} static Task TestAsync()
{
var stateMachine = new StateMachine()
{
_builder = AsyncTaskMethodBuilder.Create(),
_state = -1
};
stateMachine._builder.Start(ref stateMachine);
return stateMachine._builder.Task;
} static void Main()
{
_ = TestAsync();
Console.WriteLine("End");
Console.ReadKey();
} class StateMachine : IAsyncStateMachine
{
public int _state;
public AsyncTaskMethodBuilder _builder;
private TaskAwaiter<int> _awaiter; void IAsyncStateMachine.MoveNext()
{
int num = _state;
try
{
TaskAwaiter<int> awaiter;
if (num != 0)
{
Console.WriteLine("Before Task.Run");
awaiter = Task.Run(Work).GetAwaiter();
if (!awaiter.IsCompleted)
{
_state = 0;
_awaiter = awaiter;
StateMachine stateMachine = this;
_builder.AwaitUnsafeOnCompleted(ref awaiter, ref stateMachine);
return;
}
}
else
{
awaiter = _awaiter;
_awaiter = default;
_state = -1;
}
awaiter.GetResult();
Console.WriteLine("After Task.Run");
}
catch (Exception exception)
{
_state = -2;
_builder.SetException(exception);
return;
}
_state = -2;
_builder.SetResult();
} void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { }
}
}
  • 编译后的代码经过我的整理,命名简化了,更容易理解

状态机实现

  • 我们看到实际是生成了一个隐藏的状态机类 StateMachine

  • 把状态机的初始状态 _state 设置 -1

  • stateMachine._builder.Start(ref stateMachine); 启动状态机,内部实际调用的就是状态机的 MoveNext 方法

  • Task.Run 创建一个任务, 把委托放在 Task.m_action 字段,丢到线程池,等待调度

  • 任务在线程池内被调度完成后,是怎么回到这个状态机继续执行后续代码的呢?

    _builder.AwaitUnsafeOnCompleted(ref awaiter, ref stateMachine); 就是关键了, 跟下去,到了如下的代码:

    if (!this.AddTaskContinuation(stateMachineBox, false))
    {
    ThreadPool.UnsafeQueueUserWorkItemInternal(stateMachineBox, true);
    }
    bool AddTaskContinuation(object tc, bool addBeforeOthers)
    {
    return !this.IsCompleted && ((this.m_continuationObject == null && Interlocked.CompareExchange(ref this.m_continuationObject, tc, null) == null) || this.AddTaskContinuationComplex(tc, addBeforeOthers));
    }
    • 这里很清楚的看到,尝试把状态机对象(实际是状态机的包装类),赋值到 Task.m_continuationObject, 如果操作失败,则把状态机对象丢进线程池等待调度,这里为什么这么实现,看一下线程池是怎么执行的就清楚了

线程池实现

  • .NET6 的线程池实现,实际是放到了 PortableThreadPool, 具体调试步骤我就不放了,直接说结果就是, 线程池线程从任务队列中拿到任务后都执行了 DispatchWorkItem 方法
static void DispatchWorkItem(object workItem, Thread currentThread)
{
Task task = workItem as Task;
if (task != null)
{
task.ExecuteFromThreadPool(currentThread);
return;
}
Unsafe.As<IThreadPoolWorkItem>(workItem).Execute();
}
virtual void ExecuteFromThreadPool(Thread threadPoolThread)
{
this.ExecuteEntryUnsafe(threadPoolThread);
}
  • 我们看到, 线程池队列中的任务都是 object 类型的, 这里进行了类型判断, 如果是 Task , 直接执行 task.ExecuteFromThreadPool, 更有意思的这个方法是个虚方法,后面说明

  • ExecuteFromThreadPool 继续追下去,我们来到了这里,代码做了简化

    private void ExecuteWithThreadLocal(ref Task currentTaskSlot, Thread threadPoolThread = null)
    {
    this.InnerInvoke();
    this.Finish(true);
    } virtual void InnerInvoke()
    {
    Action action = this.m_action as Action;
    if (action != null)
    {
    action();
    return;
    }
    }
  • 很明显 this.InnerInvoke 就是执行了最开始 Task.Run(Work) 封装的委托了, 在 m_action 字段

  • this.Finish(true); 跟下去会发现会调用 FinishStageTwo 设置任务的完成状态,异常等, 继续调用 FinishStageThree 就来了重点: FinishContinuations 这个方法就是衔接后续回调的核心

    internal void FinishContinuations()
    {
    object obj = Interlocked.Exchange(ref this.m_continuationObject, Task.s_taskCompletionSentinel);
    if (obj != null)
    {
    this.RunContinuations(obj);
    }
    }
  • 还记得状态机实现么, Task.m_continuationObject 字段实际存储的就是状态机的包装类,这里线程池线程也会判断这个字段有值的话,就直接使用它执行后续代码了

    void RunContinuations(object continuationObject)
    {
    var asyncStateMachineBox = continuationObject as IAsyncStateMachineBox;
    if (asyncStateMachineBox != null)
    {
    AwaitTaskContinuation.RunOrScheduleAction(asyncStateMachineBox, flag2);
    return;
    }
    } static void RunOrScheduleAction(IAsyncStateMachineBox box, bool allowInlining)
    {
    if (allowInlining && AwaitTaskContinuation.IsValidLocationForInlining)
    {
    box.MoveNext();
    return;
    }
    }

总结

  1. Task.Run 创建 Task, 把委托放在 m_action 字段, 把 Task 压入线程池队列,等待调度
  2. _builder.AwaitUnsafeOnCompleted(ref awaiter, ref stateMachine); 尝试把状态机对象放在 Task.m_continuationObject 字段上,等待线程池线程调度完成任务后使用(用来执行后续),若操作失败,直接把状态机对象压入线程池队列,等待调度
  3. 线程池线程调度任务完成后,会判断 Task.m_continuationObject 有值,直接执行它的 MoveNext

备注

  1. 状态机实现中,尝试修改 Task.m_continuationObject,可能会失败,

    就会直接把状态机对象压入线程池, 但是线程池调度,不都是判断是不是 Task 类型么, 其实状态机的包装类是 Task 的子类,哈哈,是不是明白了

    class AsyncStateMachineBox<TStateMachine> : Task<TResult>, IAsyncStateMachineBox where TStateMachine : IAsyncStateMachine
    
    static void DispatchWorkItem(object workItem, Thread currentThread)
    {
    Task task = workItem as Task;
    if (task != null)
    {
    task.ExecuteFromThreadPool(currentThread);
    return;
    }
    Unsafe.As<IThreadPoolWorkItem>(workItem).Execute();
    }
  • 还有就是状态机包装类,重写了 Task.ExecuteFromThreadPool,所以线程池调用 task.ExecuteFromThreadPool 就是直接调用了状态机的 MoveNext 了, Soga ^_^
    override void ExecuteFromThreadPool(Thread threadPoolThread)
    {
    this.MoveNext(threadPoolThread);
    }
参考链接
  • 关于线程池和异步的更深刻的原理,大家可以参考下面的文章

概述 .NET 6 ThreadPool 实现: https://www.cnblogs.com/eventhorizon/p/15316955.html

.NET Task 揭秘(2):Task 的回调执行与 await: https://www.cnblogs.com/eventhorizon/p/15912383.html

.NET6中的await原理浅析的更多相关文章

  1. 关于 ReentrantLock 中锁 lock() 和解锁 unlock() 的底层原理浅析

    关于 ReentrantLock 中锁 lock() 和解锁 unlock() 的底层原理浅析 如下代码,当我们在使用 ReentrantLock 进行加锁和解锁时,底层到底是如何帮助我们进行控制的啦 ...

  2. Javascript自执行匿名函数(function() { })()的原理浅析

    匿名函数就是没有函数名的函数.这篇文章主要介绍了Javascript自执行匿名函数(function() { })()的原理浅析的相关资料,需要的朋友可以参考下 函数是JavaScript中最灵活的一 ...

  3. Mysql 中的MVCC原理,undo日志的依赖

    一. MVCC 原理了解   原文点击:MVCC原理浅析 读锁: 也叫共享锁.S锁,若事务T对数据对象A加上S锁,则事务T可以读A但不能修改A,其他事务只能再对A加S锁,而不能加X锁,直到T释放A上的 ...

  4. JAVA 8 主要新特性 ----------------(二)版本中数据结构的修改浅析

    一.版本中数据结构的修改浅析1.HashMap.HashSet.ConcurrentHashMap的数据结构发生变化 (1)HashMap简介(结构:哈希表+链表) HashMap存储的数据是无序的, ...

  5. [转帖]Git数据存储的原理浅析

    Git数据存储的原理浅析 https://segmentfault.com/a/1190000016320008   写作背景 进来在闲暇的时间里在看一些关系P2P网络的拓扑发现的内容,重点关注了Ma ...

  6. Android-Binder原理浅析

    Android-Binder原理浅析 学习自 <Android开发艺术探索> 写在前头 在上一章,我们简单的了解了一下Binder并且通过 AIDL完成了一个IPC的DEMO.你可能会好奇 ...

  7. Dubbo学习(一) Dubbo原理浅析

    一.初入Dubbo Dubbo学习文档: http://dubbo.incubator.apache.org/books/dubbo-user-book/ http://dubbo.incubator ...

  8. 沉淀,再出发:docker的原理浅析

    沉淀,再出发:docker的原理浅析 一.前言 在我们使用docker的时候,很多情况下我们对于一些概念的理解是停留在名称和用法的地步,如果更进一步理解了docker的本质,我们的技术一定会有质的进步 ...

  9. 阻塞和唤醒线程——LockSupport功能简介及原理浅析

    目录 1.LockSupport功能简介 1.1 使用wait,notify阻塞唤醒线程 1.2 使用LockSupport阻塞唤醒线程 2. LockSupport的其他特色 2.1 可以先唤醒线程 ...

  10. 【Spark Core】TaskScheduler源代码与任务提交原理浅析2

    引言 上一节<TaskScheduler源代码与任务提交原理浅析1>介绍了TaskScheduler的创建过程,在这一节中,我将承接<Stage生成和Stage源代码浅析>中的 ...

随机推荐

  1. 可托拉拽的WPF选项卡控件,强大好用!

    推荐一个简单易用的WPF选项卡控件. 项目简介 这是一个基于WPF开发的,可扩展.高度可定制.轻量级的UI组件,支持拖拉拽功能,可以让开发人员快速实现需要选项卡窗口的系统. 特色功能 1.拖拉拽标签: ...

  2. 从module_init看内核模块

    开篇 module_init是linux内核提供的一个宏, 可以用来在编写内核模块时注册一个初始化函数, 当模块被加载的时候, 内核负责执行这个初始化函数. 在编写设备驱动程序时, 使用这个宏看起来理 ...

  3. [django]数据的导入和导出

    除了使用mysqldump或者MySQL客户端进行数据导出,django也提供了类似的功能. 导出 # 导出整个数据库并保存为json文件 python manage.py dumpdata > ...

  4. Jenkins 配置邮件通知(腾讯企业邮箱)

    开通企业邮箱SMTP服务 登录企业微信邮箱,然后打开设置,在里面找到 收发信设置,在开启服务里面将 开启IMAP/SMTP服务 勾选 保存后回到邮箱绑定页签下,将安全设置里的安全登录开关打开 在下面的 ...

  5. dBeaver操作iotdb并实现导入和导出

    1.windows下操作iotdb,现在官网下载相关的iotdb包 官网地址:https://archive.apache.org/dist/iotdb/   一般建议下载 -all的  2.打开db ...

  6. 如何实现IP话机接入交换机?

    组网图形 简介 如果语音设备支持LLDP协议,并且支持通过network-policy TLV字段获取语音VLAN,可以在交换机上配置命令lldp tlv-enable med-tlv network ...

  7. 3天上手Ascend C编程丨通过Ascend C编程范式实现一个算子实例

    本文分享自华为云社区<3天上手Ascend C编程 | Day2 通过Ascend C编程范式实现一个算子实例>,作者:昇腾CANN . 一.Ascend C编程范式 Ascend C编程 ...

  8. Solution -「NOI 2021」轻重边

    Description Link. 给出一棵树,初始边权为 \(0\),支持毛毛虫虫体赋 \(1\),虫足赋 \(0\),以及查询路径边权和操作,\(n,m\leqslant 10^5\). Solu ...

  9. 其它——paramiko模块的使用

    文章目录 paramiko 一 介绍 二 通过用户名密码方式远程执行命令 三 通过用户名密码方式上传下载文件 四 通过公钥私钥远程执行命令 五 通过公钥私钥远程上传下载文件 六 通过私钥字符串远程连接 ...

  10. About Info-ZIP

    LATEST RELEASES: Zip 3.00 was released on 7 July 2008. WiZ 5.03 was released on 11 March 2005. UnZip ...