神经网络优化篇:详解指数加权平均的偏差修正(Bias correction in exponentially weighted averages)
指数加权平均的偏差修正

\({{v}_{t}}=\beta {{v}_{t-1}}+(1-\beta ){{\theta }_{t}}\)
在上一个博客中,这个(红色)曲线对应\(\beta\)的值为0.9,这个(绿色)曲线对应的\(\beta\)=0.98,如果执行写在这里的公式,在\(\beta\)等于0.98的时候,得到的并不是绿色曲线,而是紫色曲线,可以注意到紫色曲线的起点较低,来看看怎么处理。
计算移动平均数的时候,初始化\(v_{0} = 0\),\(v_{1} = 0.98v_{0} +0.02\theta_{1}\),但是\(v_{0} =0\),所以这部分没有了(\(0.98v_{0}\)),所以\(v_{1} =0.02\theta_{1}\),所以如果一天温度是40华氏度,那么\(v_{1} = 0.02\theta_{1} =0.02 \times 40 = 8\),因此得到的值会小很多,所以第一天温度的估测不准。
\(v_{2} = 0.98v_{1} + 0.02\theta_{2}\),如果代入\(v_{1}\),然后相乘,所以\(v_{2}= 0.98 \times 0.02\theta_{1} + 0.02\theta_{2} = 0.0196\theta_{1} +0.02\theta_{2}\),假设\(\theta_{1}\)和\(\theta_{2}\)都是正数,计算后\(v_{2}\)要远小于\(\theta_{1}\)和\(\theta_{2}\),所以\(v_{2}\)不能很好估测出这一年前两天的温度。

有个办法可以修改这一估测,让估测变得更好,更准确,特别是在估测初期,也就是不用\(v_{t}\),而是用\(\frac{v_{t}}{1- \beta^{t}}\),t就是现在的天数。举个具体例子,当\(t=2\)时,\(1 - \beta^{t} = 1 - {0.98}^{2} = 0.0396\),因此对第二天温度的估测变成了\(\frac{v_{2}}{0.0396} =\frac{0.0196\theta_{1} + 0.02\theta_{2}}{0.0396}\),也就是\(\theta_{1}\)和\(\theta_{2}\)的加权平均数,并去除了偏差。会发现随着\(t\)增加,\(\beta^{t}\)接近于0,所以当\(t\)很大的时候,偏差修正几乎没有作用,因此当\(t\)较大的时候,紫线基本和绿线重合了。不过在开始学习阶段,才开始预测热身练习,偏差修正可以帮助更好预测温度,偏差修正可以帮助使结果从紫线变成绿线。
在机器学习中,在计算指数加权平均数的大部分时候,大家不在乎执行偏差修正,因为大部分人宁愿熬过初始时期,拿到具有偏差的估测,然后继续计算下去。如果关心初始时期的偏差,在刚开始计算指数加权移动平均数的时候,偏差修正能帮助在早期获取更好的估测。
神经网络优化篇:详解指数加权平均的偏差修正(Bias correction in exponentially weighted averages)的更多相关文章
- ubuntu之路——day8.2 深度学习优化算法之指数加权平均与偏差修正,以及基于指数加权移动平均法的动量梯度下降法
首先感谢吴恩达老师的免费公开课,以下图片均来自于Andrew Ng的公开课 指数加权平均法 在统计学中被称为指数加权移动平均法,来看下面一个例子: 这是伦敦在一些天数中的气温分布图 Vt = βVt- ...
- PHP函数篇详解十进制、二进制、八进制和十六进制转换函数说明
PHP函数篇详解十进制.二进制.八进制和十六进制转换函数说明 作者: 字体:[增加 减小] 类型:转载 中文字符编码研究系列第一期,PHP函数篇详解十进制.二进制.八进制和十六进制互相转换函数说明 ...
- 走向DBA[MSSQL篇] 详解游标
原文:走向DBA[MSSQL篇] 详解游标 前篇回顾:上一篇虫子介绍了一些不常用的数据过滤方式,本篇详细介绍下游标. 概念 简单点说游标的作用就是存储一个结果集,并根据语法将这个结果集的数据逐条处理. ...
- Scala进阶之路-Scala函数篇详解
Scala进阶之路-Scala函数篇详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.传值调用和传名调用 /* @author :yinzhengjie Blog:http: ...
- CentOS 7 下编译安装lnmp之PHP篇详解
一.安装环境 宿主机=> win7,虚拟机 centos => 系统版本:centos-release-7-5.1804.el7.centos.x86_64 二.PHP下载 官网 http ...
- CentOS 7 下编译安装lnmp之MySQL篇详解
一.安装环境 宿主机=> win7,虚拟机 centos => 系统版本:centos-release-7-5.1804.el7.centos.x86_64 二.MySQL下载 MySQL ...
- CentOS 7 下编译安装lnmp之nginx篇详解
一.安装环境 宿主机=> win7,虚拟机 centos => 系统版本:CentOS Linux release 7.5.1804 (Core),ip地址 192.168.1.168 ...
- Canal:同步mysql增量数据工具,一篇详解核心知识点
老刘是一名即将找工作的研二学生,写博客一方面是总结大数据开发的知识点,一方面是希望能够帮助伙伴让自学从此不求人.由于老刘是自学大数据开发,博客中肯定会存在一些不足,还希望大家能够批评指正,让我们一起进 ...
- java提高篇-----详解java的四舍五入与保留位
转载:http://blog.csdn.net/chenssy/article/details/12719811 四舍五入是我们小学的数学问题,这个问题对于我们程序猿来说就类似于1到10的加减乘除那么 ...
- 组件--Fragment(碎片)第二篇详解
感觉之前看的还是不清楚,重新再研究了一次 Fragment常用的三个类: android.app.Fragment 主要用于定义Fragment android.app.FragmentManager ...
随机推荐
- 你真的了解@Async吗?
使用场景: 开发中会碰到一些耗时较长或者不需要立即得到执行结果的逻辑,比如消息推送.商品同步等都可以使用异步方法,这时我们可以用到@Async.但是直接使用 @Async 会有风险,当我们没有指定线程 ...
- L3-013 非常弹的球
初速度:\(v = \sqrt{\cfrac{2 * E}{m}};\) 竖直速度:\(v_y = v \,sin(ans) = g * t\) 水平距离:\(s = v_x * 2t = v \, ...
- 后台获取的map集合封装json
let list = [] let arr = {'a':'1','b':'2','c':'3','d':'4'} for(var key in arr){ console.log("key ...
- Java 21增强对Emoji表情符号的处理了
现一个 Java 21 中有意思的东西! 在java.Lang.Character类中增加了用于确定字符是否为 Emoji 表情符号的 API,主要包含下面六个新的静态方法: public stati ...
- C++ Qt开发:如何使用信号与槽
在Qt中,信号与槽(Signal and Slot)是一种用于对象之间通信的机制.是Qt框架引以为傲的一项机制,它带来了许多优势,使得Qt成为一个强大且灵活的开发框架之一.信号与槽的关联通过QObje ...
- [ABC267F] Exactly K Steps
Problem Statement You are given a tree with $N$ vertices. The vertices are numbered $1, \dots, N$, a ...
- 文档理解的新时代:LayOutLM模型的全方位解读
一.引言 在现代文档处理和信息提取领域,机器学习模型的作用日益凸显.特别是在自然语言处理(NLP)技术快速发展的背景下,如何让机器更加精准地理解和处理复杂文档成为了一个挑战.文档不仅包含文本信息,还包 ...
- 【scikit-learn基础】--『预处理』之 离散化
数据的预处理是数据分析,或者机器学习训练前的重要步骤.通过数据预处理,可以 提高数据质量,处理数据的缺失值.异常值和重复值等问题,增加数据的准确性和可靠性 整合不同数据,数据的来源和结构可能多种多样, ...
- django模型不应该作为参数传递给task
Django 模型对象.它们不应该作为任务的参数传递.当任务运行时从数据库重新获取对象几乎总是更好,因为使用旧数据可能会导致竞争条件. 想象一下以下场景,您有一篇文章和一个自动扩展其中一些缩写的任务: ...
- S32Kxxx bootloader之CAN FD UDS bootloader
了解更多关于bootloader 的C语言实现,请加我Q扣: 1273623966 (验证信息请填 bootloader),欢迎咨询或定制bootloader(在线升级程序). 六年前, 汽车内ECU ...