神经网络优化篇:详解指数加权平均的偏差修正(Bias correction in exponentially weighted averages)
指数加权平均的偏差修正

\({{v}_{t}}=\beta {{v}_{t-1}}+(1-\beta ){{\theta }_{t}}\)
在上一个博客中,这个(红色)曲线对应\(\beta\)的值为0.9,这个(绿色)曲线对应的\(\beta\)=0.98,如果执行写在这里的公式,在\(\beta\)等于0.98的时候,得到的并不是绿色曲线,而是紫色曲线,可以注意到紫色曲线的起点较低,来看看怎么处理。
计算移动平均数的时候,初始化\(v_{0} = 0\),\(v_{1} = 0.98v_{0} +0.02\theta_{1}\),但是\(v_{0} =0\),所以这部分没有了(\(0.98v_{0}\)),所以\(v_{1} =0.02\theta_{1}\),所以如果一天温度是40华氏度,那么\(v_{1} = 0.02\theta_{1} =0.02 \times 40 = 8\),因此得到的值会小很多,所以第一天温度的估测不准。
\(v_{2} = 0.98v_{1} + 0.02\theta_{2}\),如果代入\(v_{1}\),然后相乘,所以\(v_{2}= 0.98 \times 0.02\theta_{1} + 0.02\theta_{2} = 0.0196\theta_{1} +0.02\theta_{2}\),假设\(\theta_{1}\)和\(\theta_{2}\)都是正数,计算后\(v_{2}\)要远小于\(\theta_{1}\)和\(\theta_{2}\),所以\(v_{2}\)不能很好估测出这一年前两天的温度。

有个办法可以修改这一估测,让估测变得更好,更准确,特别是在估测初期,也就是不用\(v_{t}\),而是用\(\frac{v_{t}}{1- \beta^{t}}\),t就是现在的天数。举个具体例子,当\(t=2\)时,\(1 - \beta^{t} = 1 - {0.98}^{2} = 0.0396\),因此对第二天温度的估测变成了\(\frac{v_{2}}{0.0396} =\frac{0.0196\theta_{1} + 0.02\theta_{2}}{0.0396}\),也就是\(\theta_{1}\)和\(\theta_{2}\)的加权平均数,并去除了偏差。会发现随着\(t\)增加,\(\beta^{t}\)接近于0,所以当\(t\)很大的时候,偏差修正几乎没有作用,因此当\(t\)较大的时候,紫线基本和绿线重合了。不过在开始学习阶段,才开始预测热身练习,偏差修正可以帮助更好预测温度,偏差修正可以帮助使结果从紫线变成绿线。
在机器学习中,在计算指数加权平均数的大部分时候,大家不在乎执行偏差修正,因为大部分人宁愿熬过初始时期,拿到具有偏差的估测,然后继续计算下去。如果关心初始时期的偏差,在刚开始计算指数加权移动平均数的时候,偏差修正能帮助在早期获取更好的估测。
神经网络优化篇:详解指数加权平均的偏差修正(Bias correction in exponentially weighted averages)的更多相关文章
- ubuntu之路——day8.2 深度学习优化算法之指数加权平均与偏差修正,以及基于指数加权移动平均法的动量梯度下降法
首先感谢吴恩达老师的免费公开课,以下图片均来自于Andrew Ng的公开课 指数加权平均法 在统计学中被称为指数加权移动平均法,来看下面一个例子: 这是伦敦在一些天数中的气温分布图 Vt = βVt- ...
- PHP函数篇详解十进制、二进制、八进制和十六进制转换函数说明
PHP函数篇详解十进制.二进制.八进制和十六进制转换函数说明 作者: 字体:[增加 减小] 类型:转载 中文字符编码研究系列第一期,PHP函数篇详解十进制.二进制.八进制和十六进制互相转换函数说明 ...
- 走向DBA[MSSQL篇] 详解游标
原文:走向DBA[MSSQL篇] 详解游标 前篇回顾:上一篇虫子介绍了一些不常用的数据过滤方式,本篇详细介绍下游标. 概念 简单点说游标的作用就是存储一个结果集,并根据语法将这个结果集的数据逐条处理. ...
- Scala进阶之路-Scala函数篇详解
Scala进阶之路-Scala函数篇详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.传值调用和传名调用 /* @author :yinzhengjie Blog:http: ...
- CentOS 7 下编译安装lnmp之PHP篇详解
一.安装环境 宿主机=> win7,虚拟机 centos => 系统版本:centos-release-7-5.1804.el7.centos.x86_64 二.PHP下载 官网 http ...
- CentOS 7 下编译安装lnmp之MySQL篇详解
一.安装环境 宿主机=> win7,虚拟机 centos => 系统版本:centos-release-7-5.1804.el7.centos.x86_64 二.MySQL下载 MySQL ...
- CentOS 7 下编译安装lnmp之nginx篇详解
一.安装环境 宿主机=> win7,虚拟机 centos => 系统版本:CentOS Linux release 7.5.1804 (Core),ip地址 192.168.1.168 ...
- Canal:同步mysql增量数据工具,一篇详解核心知识点
老刘是一名即将找工作的研二学生,写博客一方面是总结大数据开发的知识点,一方面是希望能够帮助伙伴让自学从此不求人.由于老刘是自学大数据开发,博客中肯定会存在一些不足,还希望大家能够批评指正,让我们一起进 ...
- java提高篇-----详解java的四舍五入与保留位
转载:http://blog.csdn.net/chenssy/article/details/12719811 四舍五入是我们小学的数学问题,这个问题对于我们程序猿来说就类似于1到10的加减乘除那么 ...
- 组件--Fragment(碎片)第二篇详解
感觉之前看的还是不清楚,重新再研究了一次 Fragment常用的三个类: android.app.Fragment 主要用于定义Fragment android.app.FragmentManager ...
随机推荐
- PZthon
一道新式题目,python.exe的分析 这个时候没有思路不要紧,直接wp 先用特别的软件执行.exe程序,就是对.exe进行反编译 然后在反编译脚本的目录写就有了一个打包文件夹 在里面找到文件的.p ...
- Boruvka 算法
Boruvka算法解决某些问题超级好用. 这些问题形如,给你n个点,每个点有点权,任意两个点之间有边权,边权为两个点权用过某种计算方式得出. 求最小生成树. 通常用 \(O(log n)\) 的时间可 ...
- Windows 使用 keytool 导入证书到 jdk 密钥库
确定 java 安装路径, 一般情况下存在于 C:\Program Files\Java\jdk_xxx,根据自身电脑安装情况而定. 管理员权限打开终端 cmd ,进入C:\Program Files ...
- C语言计算并输出华氏温度为80F所对应的摄氏温度C。转换公式为:C=5*(F-32)/9
#include <stdio.h> int main() { double F = 80.0, C;//定义摄氏温度变量,赋值华氏温度 C = 5 * (F - 32) / 9.0;// ...
- 通过滴滴技术博客:探寻造成此次P0故障的真正原因
2023年11月27日晚至2023年11月28日早晨,滴滴发生了长达12小时的P0级故障,导致滴滴核心业务都受到了影响,比如不显示定位无法打车.滴滴单车无法扫码等问题,期间滴滴进行了多次致歉 目前问题 ...
- Linux中execl函数详解与日常应用!
Linux中execl函数详解与日常应用 execl是Linux系统中的一个系统调用,用于执行指定路径下的可执行文件.本文将详细介绍execl函数的使用方法和参数含义,并探讨其在日常开发中的常见应用场 ...
- drf实战和源码剖析----学习笔记1
学自:bilibili武沛齐老师. 武老师讲课:清晰,连贯,实用,透彻,真乃名师! # 1. 什么是前后端分离 - 不分离,主要用于后台系统(CRUD)和用户量上的情况,开发起来代价小- 分离,面向用 ...
- C++ Qt开发:CheckBox多选框组件
Qt 是一个跨平台C++图形界面开发库,利用Qt可以快速开发跨平台窗体应用程序,在Qt中我们可以通过拖拽的方式将不同组件放到指定的位置,实现图形化开发极大的方便了开发效率,本章将重点介绍CheckBo ...
- UMP系统功能
1.容灾: 主库发生故障,执行从库 主从切换: 主库恢复:(切换过程中有短暂的不可用) 2.读写分离 3.分库分表: 当采用分库分表时,系统处理用户查询的过程如下: 4.资源管理: 具体的MySQL实 ...
- Cocos Creator性能调优
一. 为什么要做性能优化 性能:是程序的一种优秀的能力.唤醒快.运行持久.稳定 这种能力正在游戏上能让你的用户感觉很爽,特征表现为加载快.运行流畅.不卡顿. 所以,性能优化的终极目标是,让你的用户体验 ...