由 $$\bex \cfrac{\p \rho}{\p t}&+u_1\cfrac{\p \rho}{\p x}+\rho\cfrac{\p u_1}{\p x}=0, \eex$$ 我们可以引进 Lebesgue 坐标 $(t',m)$, 而将一维磁流体力学方程组化为 Lagrange 形式, 而有较简单的形式.

[物理学与PDEs]第3章第5节 一维磁流体力学方程组 5.2 一维磁流体力学方程组的 Lagrange 形式的更多相关文章

  1. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  2. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  3. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  4. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  5. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  6. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  7. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

  8. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量

    1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...

  9. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量

    $$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...

  10. [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构

    一维理想反应流体力学方程组是一阶拟线性双曲组.

随机推荐

  1. 在Visual Studio 2017上配置Glut

    在Visual Studio 2017上配置Glut 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 在Visual Studio 2017上配置并使用 ...

  2. 英语词性系列-B02-动词

    诗Poem 要求:背诵这首诗,翻译现代文,根据现代文用简单的英文翻译. 动词直观体会 动词 动词 动词 动词 动词 sell卖 buy买 beat击打 look看 dance跳舞 sing唱歌 spe ...

  3. 10-ajax技术简介

    一.ajax是什么?是网页中的异步刷新技术.其核心是js+xml二.执行过程1.js的核心对象XMLHttpRequest是一个具备像后台发送请求的一个对象2.XMLHttpRequest可以异步发送 ...

  4. 问题记录2019-03-06(todo)

    RuntimeError: maximum recursion depth exceeded while calling a Python object

  5. DeeplabV3+ 命令行不显示miou的解决

    首先看到训练时会在命令行里输出 loss 和 total loss,那是怎么做到的呢,通过分析 train.py 源码,看到如下代码 total_loss = tf.cond( should_log, ...

  6. MJT's Blog

    This is MJT's blog. Here is a mirror web of his blog.

  7. Asp.Net Core使用NLog+Mysql的几个小问题

    项目中使用NLog记录日志,很好用,之前一直放在文本文件中,准备放到db中,方便查询. 项目使用了Mysql,所以日志也放到Mysql上,安装NLog不用说,接着你需要安装Mysql.Data安装包: ...

  8. 复杂度定义 The Definition of Complexity

    The upper bound   Big-O: Definition: f(n) is in O(g(n)) if there are constants c0 and N0 such that f ...

  9. C#中字符串的字面值(转义序列)

    在程序开发中,经常会碰到在字符串中字面值中使用转义序列,下面表格收集了下转义序列的完整列表,以便大家查看引用: 转义序列列表 转义序列 产生的字符 字符的Unicode值 \' 单引号 0x0027 ...

  10. Python——编译标准

    注意事项 1.关于包相关的导入语句也分为import和from ... import ...两种,但是无论哪种,无论在什么位置,在导入时都必须遵循一个原则:凡是在导入时带点的,点的左边都必须是一个包, ...