[物理学与PDEs]第3章第5节 一维磁流体力学方程组 5.2 一维磁流体力学方程组的 Lagrange 形式
由 $$\bex \cfrac{\p \rho}{\p t}&+u_1\cfrac{\p \rho}{\p x}+\rho\cfrac{\p u_1}{\p x}=0, \eex$$ 我们可以引进 Lebesgue 坐标 $(t',m)$, 而将一维磁流体力学方程组化为 Lagrange 形式, 而有较简单的形式.
[物理学与PDEs]第3章第5节 一维磁流体力学方程组 5.2 一维磁流体力学方程组的 Lagrange 形式的更多相关文章
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量
1. 引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量
$$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...
- [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构
一维理想反应流体力学方程组是一阶拟线性双曲组.
随机推荐
- Python中的一些小技巧
1.Boolean值可以当做一个数值 a = [5,6,7,8,9] print(a[True]) #prints 6 print(a[False]) #prints 5 2.两种方法实现 a = 1 ...
- insert into select的实际用法
INSERT INTO SELECT语句 语句形式为:Insert into Table2(field1,field2,...) select value1,value2,... from Table ...
- Django REST framework基础:认证、权限、限制
认证.权限和限制 身份验证是将传入请求与一组标识凭据(例如请求来自的用户或其签名的令牌)相关联的机制.然后 权限 和 限制 组件决定是否拒绝这个请求. 简单来说就是: 认证确定了你是谁 权限确定你能不 ...
- IIS出现The specified module could not be found的解决方法
1.打开IIS 信息服务,在左侧找到自己的计算机,点右键,选择属性,在主属性中选编辑,打开“目录安全性”选项卡,单击“匿名访问和验证控制”里的“编辑”按钮,在弹出的对话框中确保只选中了“匿名访问 ...
- TableExistsException: hbase:namespace
解决:zookeeper还保留着上一次的Hbase设置,所以造成了冲突.删除zookeeper信息,重启之后就没问题了 1.切换到zookeeper的bin目录: 2.执行$sh zkCli.sh 输 ...
- 干货:Vue粒子特效(vue-particles插件)
转:https://www.jianshu.com/p/53199b842d25 image.png 图上那些类似于星座图的点和线,是由vue-particles生成的,不仅自己动,而且能与用户鼠标事 ...
- vim之快速查找功能
vim有强大的字符串查找功能. 我们通常在vim下要查找字符串的时候, 都是输入 / 或者 ? 加 需要查找的字符串来进行搜索,比如想搜索 super 这个单词, 可以输入 /super 或者 ...
- Jmeter的JDBC Request,sql参数化及返回值取值
1.JDBC Request面板 Variable Name:数据库连接池的名字,需要与JDBC Connection Configuration的Variable Name Bound Pool名字 ...
- ARC089E GraphXY 构造
传送门 在Luogu上评了"NOI"之后评级变成了"普及+/提高"--我觉得我可能要退群了 考虑构造一个这样的图: 其中上半部分是从\(S\)开始的一条长\(1 ...
- Golang 入门 : 数组
数组是指一系列同一类型数据的集合.数组中包含的每个数据被称为数组元素(element),这种类型可以是任意的原始类型,比如 int.string 等,也可以是用户自定义的类型.一个数组包含的元素个数被 ...