【BZOJ 1016】【JSOI 2008】最小生成树计数
http://www.lydsy.com/JudgeOnline/problem.php?id=1016
统计每一个边权在最小生成树中使用的次数,这个次数在任何一个最小生成树中都是固定的(归纳证明)。
在同一个边权上对所有边权为这个的边暴力统计(可以用矩阵树定理),然后用并查集把这个边权的所有边贡献的连通性都加上,再统计下一个边权。
最后把答案乘起来。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N = 103;
const int M = 1003;
const int p = 31011;
struct Edge {
int u, v, e;
bool operator < (const Edge &A) const {
return e < A.e;
}
} E[M];
int fa[N], n, m, sz[N], val[N], tot[N], l[N], r[N];
int find(int x) {return fa[x] == x ? x : find(fa[x]);}
void merge(int x, int y) {
fa[x] = y; sz[y] += sz[x];
while (fa[y] != y) {
y = fa[y];
sz[y] += sz[x];
}
}
void cut(int x, int y) {
if (fa[x] == y) {
fa[x] = x;
sz[y] -= sz[x];
while (fa[y] != y) {
y = fa[y];
sz[y] -= sz[x];
}
} else {
fa[y] = y;
sz[x] -= sz[y];
while (fa[x] != x) {
x = fa[x];
sz[x] -= sz[y];
}
}
}
int dfsl, dfsr, dfstot, sum;
void dfs(int tmp, int nowtot) {
if (nowtot == dfstot) {++sum; if (sum == p) sum = 0; return;}
if (tmp > dfsr || dfstot - nowtot > dfsr - tmp + 1) return;
dfs(tmp + 1, nowtot);
int u = find(E[tmp].u), v = find(E[tmp].v);
if (u != v) {
if (sz[u] < sz[v]) merge(u, v); else merge(v, u);
dfs(tmp + 1, nowtot + 1);
cut(u, v);
}
}
int in() {
int k = 0; char c = getchar();
for (; c < '0' || c > '9'; c = getchar());
for (; c >= '0' && c <= '9'; c = getchar())
k = k * 10 + c - 48;
return k;
}
int main() {
n = in(); m = in();
int i;
for (i = 1; i <= m; ++i) {E[i].u = in(); E[i].v = in(); E[i].e = in();}
stable_sort(E + 1, E + m + 1);
int x, y, num = 0, cnt = 0; val[0] = -1;
for (i = 1; i <= n; ++i) fa[i] = i, sz[i] = 1;
for (i = 1; i <= m; ++i) {
x = find(E[i].u); y = find(E[i].v);
if (E[i].e != val[num]) {
r[num] = i - 1;
val[++num] = E[i].e;
l[num] = i;
}
if (x != y) {
++tot[num];
if (sz[x] < sz[y]) merge(x, y); else merge(y, x);
++cnt;
if (cnt == n - 1)
break;
}
}
if (cnt < n - 1) {puts("0"); return 0;}
for (; i <= m && E[i].e == val[num]; ++i);
r[num] = i - 1;
for (i = 1; i <= n; ++i) fa[i] = i, sz[i] = 1;
ll ans = 1;
for (i = 1; i <= num; ++i) {
sum = 0; dfsl = l[i]; dfsr = r[i]; dfstot = tot[i];
dfs(dfsl, 0);
for (int j = dfsl; j <= dfsr; ++j) {
x = find(E[j].u); y = find(E[j].v);
if (x != y) if (sz[x] < sz[y]) merge(x, y); else merge(y, x);
}
ans = ans * sum % p;
}
printf("%lld\n", ans);
return 0;
}
【BZOJ 1016】【JSOI 2008】最小生成树计数的更多相关文章
- BZOJ 1016 JSOI 2008 最小生成树计数 Kruskal+搜索
题目大意:给出一些边,求出一共能形成多少个最小生成树. 思路:最小生成树有非常多定理啊,我也不是非常明确.这里仅仅简单讲讲做法.关于定各种定理请看这里:http://blog.csdn.net/wyf ...
- JSOI 2008 最小生成树计数
JSOI 2008 最小生成树计数 今天的题目终于良心一点辣 一个套路+模版题. 考虑昨天讲的那几个结论,我们有当我们只保留最小生成树中权值不超过 $ k $ 的边的时候形成的联通块是一定的. 我们可 ...
- 【BZOJ 1016】 [JSOI2008]最小生成树计数(matrix-tree定理做法)
[题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1016 [题意] [题解] /* 接上一篇文章; 这里用matrix-tree定理搞最小 ...
- 【BZOJ 1016】[JSOI2008]最小生成树计数(搜索+克鲁斯卡尔)
[题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1016 [题意] [题解] /* 两个最小生成树T和T'; 它们各个边权的边的数目肯定是 ...
- [BZOJ 1013][JSOI 2008] 球形空间产生器sphere 题解(高斯消元)
[BZOJ 1013][JSOI 2008] 球形空间产生器sphere Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面 ...
- [BZOJ 1016] [JSOI2008] 最小生成树计数 【DFS】
题目链接:BZOJ - 1016 题目分析 最小生成树的两个性质: 同一个图的最小生成树,满足: 1)同一种权值的边的个数相等 2)用Kruscal按照从小到大,处理完某一种权值的所有边后,图的连通性 ...
- 【BZOJ】【1016】【JSOI2008】最小生成树计数
Kruskal/并查集+枚举 唉我还是too naive,orz Hzwer 一开始我是想:最小生成树删掉一条边,再加上一条边仍是最小生成树,那么这两条边权值必须相等,但我也可以去掉两条权值为1和3的 ...
- BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )
不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...
- 最小生成树的边的概念问题!!! 最小生成树的计数 bzoj 1016
1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5292 Solved: 2163[Submit][St ...
- 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)
1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...
随机推荐
- C# 高效编程笔记2
C# 高效编程笔记2 1.理解GetHashCode()的陷阱 (1)作用:作为基于散列集合定义键的散列值,如:HashSet<T>,Dictionary<K,V>容器等 (2 ...
- 全球首个实战类微信小程序开发教程
小木学堂专注于企业实战开发和经验传授,所以微信小程序诞生这么大的事怎么能不带着大家一起学习学习呢,所以小木学堂讲师连夜赶工学习并实战开发了微信小应用的第一个程序,并录制了课程现免费分享给大家.这个速度 ...
- window7 桌面新建快捷方式方法
点击开始按钮 所有程序 找到某个文件夹点开,找到文件夹里的快捷方式图标,右键--属性-- 复制 目标:上图蓝色内容. 回到桌面,右键--新建--快捷方式--把复制的内容粘贴到 请键入对象的位置-- ...
- iOS 生成二维码
首先先下载生成二维码的支持文件 libqrencode 添加依赖库 CoreGraphics.framework. QuartzCore.framework.AVFoundation.framewor ...
- linux jexus 服务 设置开机启动
linux的服务开机设置一般在 /etc/init.d/里 而jexus的默认安装目录在 /usr/jexus里 启动文件为 jws 参数 有start stop restart 这里贡献一个刚写好的 ...
- Android事件分发机制浅谈(二)--源码分析(ViewGroup篇)
上节我们大致了解了事件分发机制的内容,大概流程,这一节来分析下事件分发的源代码. 我们先来分析ViewGroup中dispatchTouchEvent()中的源码 public boolean dis ...
- WebServices:WSDL的结构分析
WSDL(Web Services Description Language,Web服务描述语言)是为描述Web Services发布的XML格式.W3C组织没有批准1.1版的WSDL,但是2.0版本 ...
- Oracle学习笔记一 初识Oracle
数据库简介 数据库(Database)是按照数据结构来组织.存储和管理数据的仓库.SQL 是 Structured Query Language(结构化查询语言)的首字母缩写词. 定义 数据库,简单来 ...
- nginx 网站搭建
nginx目录详解 默认nginx做了nginx配置文件的备份 #查看nginx配置文件去掉#号的内容,并且追加到nginx.conf.tmp egrep -v "#|^$" ng ...
- APUE学习之出错处理
当UNIX函数发生错误时,通常会返回一个负值,而且整形变量errno通常被设置为具有特定信息的值. errno是全局变量,仅当函数出错才有被改变.对待errno,应注意两条规则 ...