http://www.lydsy.com/JudgeOnline/problem.php?id=1016

统计每一个边权在最小生成树中使用的次数,这个次数在任何一个最小生成树中都是固定的(归纳证明)。

在同一个边权上对所有边权为这个的边暴力统计(可以用矩阵树定理),然后用并查集把这个边权的所有边贡献的连通性都加上,再统计下一个边权。

最后把答案乘起来。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N = 103;
const int M = 1003;
const int p = 31011; struct Edge {
int u, v, e;
bool operator < (const Edge &A) const {
return e < A.e;
}
} E[M];
int fa[N], n, m, sz[N], val[N], tot[N], l[N], r[N]; int find(int x) {return fa[x] == x ? x : find(fa[x]);} void merge(int x, int y) {
fa[x] = y; sz[y] += sz[x];
while (fa[y] != y) {
y = fa[y];
sz[y] += sz[x];
}
} void cut(int x, int y) {
if (fa[x] == y) {
fa[x] = x;
sz[y] -= sz[x];
while (fa[y] != y) {
y = fa[y];
sz[y] -= sz[x];
}
} else {
fa[y] = y;
sz[x] -= sz[y];
while (fa[x] != x) {
x = fa[x];
sz[x] -= sz[y];
}
}
} int dfsl, dfsr, dfstot, sum; void dfs(int tmp, int nowtot) {
if (nowtot == dfstot) {++sum; if (sum == p) sum = 0; return;}
if (tmp > dfsr || dfstot - nowtot > dfsr - tmp + 1) return;
dfs(tmp + 1, nowtot);
int u = find(E[tmp].u), v = find(E[tmp].v);
if (u != v) {
if (sz[u] < sz[v]) merge(u, v); else merge(v, u);
dfs(tmp + 1, nowtot + 1);
cut(u, v);
}
} int in() {
int k = 0; char c = getchar();
for (; c < '0' || c > '9'; c = getchar());
for (; c >= '0' && c <= '9'; c = getchar())
k = k * 10 + c - 48;
return k;
} int main() {
n = in(); m = in();
int i;
for (i = 1; i <= m; ++i) {E[i].u = in(); E[i].v = in(); E[i].e = in();}
stable_sort(E + 1, E + m + 1); int x, y, num = 0, cnt = 0; val[0] = -1;
for (i = 1; i <= n; ++i) fa[i] = i, sz[i] = 1;
for (i = 1; i <= m; ++i) {
x = find(E[i].u); y = find(E[i].v);
if (E[i].e != val[num]) {
r[num] = i - 1;
val[++num] = E[i].e;
l[num] = i;
}
if (x != y) {
++tot[num];
if (sz[x] < sz[y]) merge(x, y); else merge(y, x);
++cnt;
if (cnt == n - 1)
break;
}
}
if (cnt < n - 1) {puts("0"); return 0;}
for (; i <= m && E[i].e == val[num]; ++i);
r[num] = i - 1; for (i = 1; i <= n; ++i) fa[i] = i, sz[i] = 1;
ll ans = 1;
for (i = 1; i <= num; ++i) {
sum = 0; dfsl = l[i]; dfsr = r[i]; dfstot = tot[i];
dfs(dfsl, 0);
for (int j = dfsl; j <= dfsr; ++j) {
x = find(E[j].u); y = find(E[j].v);
if (x != y) if (sz[x] < sz[y]) merge(x, y); else merge(y, x);
}
ans = ans * sum % p;
}
printf("%lld\n", ans);
return 0;
}

【BZOJ 1016】【JSOI 2008】最小生成树计数的更多相关文章

  1. BZOJ 1016 JSOI 2008 最小生成树计数 Kruskal+搜索

    题目大意:给出一些边,求出一共能形成多少个最小生成树. 思路:最小生成树有非常多定理啊,我也不是非常明确.这里仅仅简单讲讲做法.关于定各种定理请看这里:http://blog.csdn.net/wyf ...

  2. JSOI 2008 最小生成树计数

    JSOI 2008 最小生成树计数 今天的题目终于良心一点辣 一个套路+模版题. 考虑昨天讲的那几个结论,我们有当我们只保留最小生成树中权值不超过 $ k $ 的边的时候形成的联通块是一定的. 我们可 ...

  3. 【BZOJ 1016】 [JSOI2008]最小生成树计数(matrix-tree定理做法)

    [题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1016 [题意] [题解] /* 接上一篇文章; 这里用matrix-tree定理搞最小 ...

  4. 【BZOJ 1016】[JSOI2008]最小生成树计数(搜索+克鲁斯卡尔)

    [题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1016 [题意] [题解] /* 两个最小生成树T和T'; 它们各个边权的边的数目肯定是 ...

  5. [BZOJ 1013][JSOI 2008] 球形空间产生器sphere 题解(高斯消元)

    [BZOJ 1013][JSOI 2008] 球形空间产生器sphere Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面 ...

  6. [BZOJ 1016] [JSOI2008] 最小生成树计数 【DFS】

    题目链接:BZOJ - 1016 题目分析 最小生成树的两个性质: 同一个图的最小生成树,满足: 1)同一种权值的边的个数相等 2)用Kruscal按照从小到大,处理完某一种权值的所有边后,图的连通性 ...

  7. 【BZOJ】【1016】【JSOI2008】最小生成树计数

    Kruskal/并查集+枚举 唉我还是too naive,orz Hzwer 一开始我是想:最小生成树删掉一条边,再加上一条边仍是最小生成树,那么这两条边权值必须相等,但我也可以去掉两条权值为1和3的 ...

  8. BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )

    不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...

  9. 最小生成树的边的概念问题!!! 最小生成树的计数 bzoj 1016

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5292  Solved: 2163[Submit][St ...

  10. 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)

    1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...

随机推荐

  1. iOS-多线程介绍

    一.前言部分 最近在面试,重新温习了一遍多线程,希望加深一遍对于多线程的理解. 1.什么是进程? 1).要了解线程我们必须先了解进程,通俗来讲进程就是在系统中运行的一个应用程序. 2).每个线程之间是 ...

  2. MySQL大数据优化

    我们考虑的情况是在你的数据量很大的情况下,千万级别的数据量.不要当我们的请求响应时间已经让我无法忍受的时候,再来想起来优化,可能有点迟了.因为可能会丢失很多潜在的价值客户.所以,在我们当初设计表,或者 ...

  3. 弹出iframe内嵌页面元素到父页面并全屏化

    (注册博客好久了,一直没舍得添砖加瓦,主要是每次想写点东西的时候,随便搜一搜发现都比我总结的都要好,甚感尴尬,但是总是要开始的,所以这就是我的第一篇博客,也绝不会是最后一篇,废话不多说,直接入正题) ...

  4. arcgis api for js入门开发系列一arcgis api离线部署

    在我的GIS之家QQ群里,很多都是arcgis api for js开发的新手,他们一般都是GIS专业的学生,或者从计算机专业刚刚转向来的giser,他们难免会遇到各种webgis开发的简单问题,由于 ...

  5. 从 HTTP 到 HTTPS - 什么是 HTTPS

    这篇文章首发于我的个人网站:听说 - https://tasaid.com/,建议在我的个人网站阅读,拥有更好的阅读体验. 这篇文章与 博客园 和 Segmentfault 共享. 前端开发QQ群:3 ...

  6. Android进阶--Acticivity的启动模式

    一.引言 我们在多次启动同一个Activity时,系统默认会重复创建多个实例,这样看上去便十分的愚蠢,所以android在设计时提供了启动模式来修改系统的默认行为.目前有四种启动模式:standard ...

  7. EF里查看/修改实体的当前值、原始值和数据库值以及重写SaveChanges方法记录实体状态

    本文目录 查看实体当前.原始和数据库值:DbEntityEntry 查看实体的某个属性值:GetValue<TValue>方法 拷贝DbPropertyValues到实体:ToObject ...

  8. Python的模块引用和查找路径

    模块间相互独立相互引用是任何一种编程语言的基础能力.对于“模块”这个词在各种编程语言中或许是不同的,但我们可以简单认为一个程序文件是一个模块,文件里包含了类或者方法的定义.对于编译型的语言,比如C#中 ...

  9. win7系统c盘瘦身,去虚拟内存方式

    电脑使用过程中,C盘出现个情况,c盘属性上的大小 > c盘内容加起来的大小 原因就是"虚拟内存"在作祟. 运行  powercfg -h off 关闭系统休眠,删除C盘 hi ...

  10. 复选框checkbox选中个数限制

    今天遇到一个问题:就是项目里有用到限制 checkbox框选中个数,看起来很简单,但是确实花了点时间才弄清楚,废话不多说,上代码 <!DOCTYPE html> <html lang ...