题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4815

大概就是推式子的时候注意有两个边界都是 n ,考虑变成 2*... 之类的。

分块维护 f[ ] 的前缀和。很好的思路是修改一个位置后前缀和数组需要区间加,整块地打上加法标记就行了。

自己本来想维护整块之间的前缀和,还有块内的前缀和;却WA得不行。之后再探究为什么WA吧。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
const int N=4e6+,M=,mod=1e9+;
int n,g[N],phi[N],f[N],pri[N];bool vis[N];
int base,bh[N],s[M],si[M],fl[N];
void upd(int &x){while(x>=mod)x-=mod;while(x<)x+=mod;}
int gcd(int a,int b){return b?gcd(b,a%b):a;}
int pw(int x,int k)
{int ret=;while(k){if(k&)ret=(ll)ret*x%mod;x=(ll)x*x%mod;k>>=;}return ret;}
void init()
{
phi[]=g[]=; int cnt=;
for(int i=;i<=n;i++)
{
if(!vis[i])pri[++cnt]=i,phi[i]=i-;
for(int j=;j<=cnt&&(ll)i*pri[j]<=n;j++)
{
vis[i*pri[j]]=;
if(i%pri[j]==){phi[i*pri[j]]=(ll)phi[i]*pri[j]%mod;break;}
else phi[i*pri[j]]=(ll)phi[i]*phi[pri[j]]%mod;
}
g[i]=(g[i-]+(ll)i*i%mod*phi[i])%mod;//presum!!
}
base=sqrt(n);
for(int i=;i<=n;i++)f[i]=(ll)i*i%mod,fl[i]=(fl[i-]+f[i])%mod;
for(int i=,j=,k=;i<=n;i++,k++)
{
bh[i]=j;if(k==base)k=,j++;
}
/*
for(int i=1,j=1,k=base;i<=n;i++)
{
f[i]=(ll)i*i%mod;bh[i]=j;
si[j]+=f[i]; upd(si[j]); fl[i]=si[j];
if(i==k)s[j]=s[j-1]+si[j],j++,k+=base;
}
*/
}
int calc(int x){int ret=fl[x]+s[bh[x]];upd(ret);return ret;}
int main()
{
int T;scanf("%d%d",&T,&n);init();
int x,y,tn; ll w;
while(T--)
{
scanf("%d%d%lld%d",&x,&y,&w,&tn);//w not %mod!!!
int u=gcd(x,y),d=bh[u];
int tf=w/(x/u)/(y/u)%mod;//not inv /*//also ok
int chg=tf+calc(u-1)-calc(u);upd(chg);
for(int i=u;bh[i]==bh[u];i++)
fl[i]+=chg,upd(fl[i]);
for(int i=bh[u]+1;i<=bh[n];i++)//n not tn!!!
s[i]+=chg,upd(s[i]);
*/
int pl=tf-f[u];upd(pl);f[u]=tf;
for(int i=u;bh[i]==bh[u];i++)
fl[i]+=pl,upd(fl[i]);
for(int i=bh[u]+;i<=bh[n];i++)
s[i]+=pl,upd(s[i]);
/*
si[d]=si[d]-f[u]+tf;upd(si[d]);
for(int i=d;i<=bh[n];i++)
s[i]=s[i-1]+si[i],upd(s[i]);
f[u]=tf; fl[u]=(bh[u-1]==bh[u]?fl[u-1]:0)+f[u];
for(int i=u+1,j=d*base;i<=j;i++)
fl[i]=fl[i-1]+f[i],upd(fl[i]);
*/
int ans=;
for(int i=,j;i<=tn;i=j+)
{
int d=tn/i,sm=; j=tn/d;
/*
if(bh[j]-bh[i]<=1)
for(int l=i;l<=j;l++)
sm+=f[l],upd(sm);
else
{
sm=s[bh[j]-1]-s[bh[i]-1]+fl[j];
upd(sm);
if(bh[i-1]==bh[i])sm-=fl[i-1],upd(sm);
}
ans=(ans+(ll)sm*g[d])%mod;
*/
ans=(ans+(ll)(calc(j)-calc(i-))*g[d])%mod;upd(ans);
}
printf("%d\n",ans);
}
return ;
}

bzoj 4815 [Cqoi2017]小Q的表格——反演+分块的更多相关文章

  1. bzoj 4815: [Cqoi2017]小Q的表格 [数论]

    4815: [Cqoi2017]小Q的表格 题意: 单点修改,查询前缀正方形和.修改后要求满足条件f(a,b)=f(b,a), b×f(a,a+b)=(a+b)*f(a,b) 一开始sb了认为一次只会 ...

  2. bzoj 4815: [Cqoi2017]小Q的表格【欧拉函数+分块】

    参考:http://blog.csdn.net/qq_33229466/article/details/70174227 看这个等式的形式就像高精gcd嘛-所以随便算一下就发现每次修改(a,b)影响到 ...

  3. BZOJ 4815 CQOI2017 小Q的表格 欧拉函数+分块

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4815 题意概述:要认真概述的话这个题就出来了... 分析: 首先分析题目,认真研究一下修 ...

  4. BZOJ 4815 [Cqoi2017]小Q的表格 ——欧拉函数

    把式子化简一波. 发现一个比较厉害的性质:每个点只能影响到行列下标$gcd$与它相同的点. 然后就可以计算$\sum_{g<=k}f(g,g)*\sum_{i<=k}\sum_{j< ...

  5. [CQOI2017]小Q的表格(数论+分块)

    题目描述 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理.每当小Q不知道如何解决时,就只好向你求助. 为了完成任务,小Q需要列一个表格,表格有无穷多 ...

  6. bzoj 4815 小Q的表格 —— 反演+分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4815 思路就和这里一样:https://blog.csdn.net/leolyun/arti ...

  7. 4815: [Cqoi2017]小Q的表格 莫比乌斯反演 分块

    (Updated 2018.04.28 : 发现公式效果不好,重新处理图片)国际惯例的题面:看到这两个公式,很多人都会想到与gcd有关.没错,最终的结论就是f(a,b)=f(gcd(a,b))*(a/ ...

  8. [CQOI2017]小Q的表格——反演好题

    zhoutb2333的题解 难得一见的新颖反演题. 一眼看可能不是反演题. 修改影响别的,很恶心. 所以考虑化简f的联系式,发现和gcd有关 于是考虑用gcd来表示所有的gcd(a,b)=g的所有f( ...

  9. [BZOJ4815][CQOI2017]小Q的表格 数论+分块

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4815 题目中所给条件中的$(a,a+b)$和$(a,b)$的关系很瞩目. 然后大家都知道$ ...

随机推荐

  1. 创建mysql表

    CREATE TABLE `t_play_product` ( `product_id` ) NOT NULL AUTO_INCREMENT COMMENT '主键ID,自增', `product_n ...

  2. Ansible 小手册系列 十五(Blocks 分组)

    当我们想在满足一个条件下,执行多个任务时,就需要分组了.而不再每个任务都要用when. tasks: - block: - command: echo 1 - shell: echo 2 - raw: ...

  3. Ansible 小手册系列 六(Patterns 匹配模式)

    Patterns 是定义Ansible要管理的主机.但是在playbook中它指的是对应主机应用特定的配置或IT流程. 命令格式 命令行 ansible <host-pattern> [o ...

  4. Disruptor快速入门

    在JDK的多线程与并发库一文中, 提到了BlockingQueue实现了生产者-消费者模型 BlockingQueue是基于锁实现的, 而锁的效率通常较低. 有没有使用CAS机制实现的生产者-消费者? ...

  5. PHP use

    PHP 7 use 语句  PHP 7 新特性 PHP 7 可以使用一个 use 从同一个 namespace 中导入类.函数和常量: 实例 实例 // PHP 7 之前版本需要使用多次 use us ...

  6. Apache .htaccess文件

    今天在将ThinkPHP的URL模式由普通模式(URL_MODE=1)http://localhost/mythinkphp/index.php/Index/user/id/1.html改为重写模式 ...

  7. Myeclipse WEB工程JSP使用JNDI 数据库连接池连接Mysql数据库

    在网上查了很多,最后实现了.下面写一下过程: 首先,在WEBROOT/META-INF下建一个文件context.xml,内容为: <?xml version="1.0" e ...

  8. (转)MapReduce Design Patterns(chapter 2 (part 3))(四)

    Inverted Index Summarizations Pattern Description 反向索引模式在MapReduce分析中经常作为一个例子.我们将会讨论我们要创建的term跟标识符之间 ...

  9. TeamTalk源码分析(十一) —— pc客户端源码分析

           --写在前面的话  在要不要写这篇文章的纠结中挣扎了好久,就我个人而已,我接触windows编程,已经六七个年头了,尤其是在我读研的三年内,基本心思都是花在学习和研究windows程序上 ...

  10. python应用中的小知识点

    1.with有什么作用 with的作用是自动管理上下文打开关闭文件的时候,可以用with,文件对象不再使用的时候,会自动给我们关闭,不需手动关闭了数据库连接的时候, 2.没有import的模块怎么快速 ...